Suppr超能文献

Description of the topological entanglement of DNA catenanes and knots by a powerful method involving strand passage and recombination.

作者信息

White J H, Millett K C, Cozzarelli N R

机构信息

Department of Mathematics, University of California, Los Angeles.

出版信息

J Mol Biol. 1987 Oct 5;197(3):585-603. doi: 10.1016/0022-2836(87)90566-3.

Abstract

We utilize a recently discovered, powerful method to classify the topological state of knots and catenanes. In this method, each such form is associated with a unique polynomial. These polynomials allow a rigorous determination of whether knotted or catenated DNA molecules that appear distinct actually are, and indicate the structure of related molecules. A tabulation is given of the polynomials for all possible stereoisomers of many of the knotted and catenated forms that are found in DNA. The polynomials for a substrate DNA molecule and the products obtained from it by either recombination or strand passage by a topoisomerase are related by a simple theorem. This theorem affords natural applications of the polynomial method to these processes. Examples are presented involving site-specific recombination by the transposon Tn3-encoded resolvase and the phage lambda integrase, in which product structure is predicted as a function of crossover mechanism.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验