Suppr超能文献

一种描述DNA连环体和纽结立体异构体的简单拓扑方法。

A simple topological method for describing stereoisomers of DNA catenanes and knots.

作者信息

White J H, Cozzarelli N R

出版信息

Proc Natl Acad Sci U S A. 1984 Jun;81(11):3322-6. doi: 10.1073/pnas.81.11.3322.

Abstract

Although linking number is an effective topological invariant for describing supercoiled DNA, it is inadequate for the additional interwinding in catenated or knotted DNA. We explain how the two-bridge theory of Schubert provides a powerful yet simple method for analyzing these forms by associating them with two integral invariants, alpha and beta, that measure their geometric complexity. These integers can either be determined graphically or computed with the aid of standard tables, and they allow tabulation of all possible stereoisomers of a given knot or catenane . A complete classification can then be made via a simple theorem. Stereoisomers of representative knots and catenanes are tabulated for easy reference. There are four stereoisomers of regularly interlocked catenanes that we designate right-handed parallel, right-handed antiparallel, left-handed parallel, and left-handed antiparallel according to the helical intertwining of the rings. The biological processes that form catenanes --replication, recombination, and topoisomerase action--predict distinctly different isomers.

摘要

尽管连环数是描述超螺旋DNA的一种有效拓扑不变量,但对于连环或打结DNA中的额外缠绕而言,它并不适用。我们解释了舒伯特的双桥理论如何提供一种强大而简单的方法来分析这些形式,即将它们与两个积分不变量α和β相关联,这两个不变量衡量了它们的几何复杂性。这些整数既可以通过图形确定,也可以借助标准表格计算得出,它们允许对给定结或连环的所有可能立体异构体进行列表。然后可以通过一个简单的定理进行完整分类。列出了代表性结和连环的立体异构体以供参考。规则互锁连环有四种立体异构体,我们根据环的螺旋缠绕情况将其指定为右手平行、右手反平行、左手平行和左手反平行。形成连环的生物学过程——复制、重组和拓扑异构酶作用——会产生明显不同的异构体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0aee/345499/51c23f7ff78b/pnas00612-0068-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验