Ramirez L S, Pasinetti P M, Lebrecht W, Ramirez-Pastor A J
Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW San Luis, Argentina.
Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, Campus Universitat Illes Balears, E-07122 Palma de Mallorca, Spain.
Phys Rev E. 2021 Jul;104(1-1):014101. doi: 10.1103/PhysRevE.104.014101.
Numerical simulations and finite-size scaling analysis have been carried out to study standard and inverse percolation of straight rigid rods on triangular lattices. In the case of standard percolation, the lattice is initially empty. Then, linear k-mers (particles occupying k consecutive sites along one of the lattice directions) are randomly and sequentially deposited on the lattice. In the case of inverse percolation, the process starts with an initial configuration where all lattice sites are occupied by single monomers (each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then the system is diluted by randomly removing sets of k consecutive monomers (linear k-mers) from the lattice. Two schemes are used for the depositing/removing process: an isotropic scheme, where the deposition (removal) of the linear objects occurs with the same probability in any lattice direction, and an anisotropic (perfectly oriented) scheme, where one lattice direction is privileged for depositing (removing) the particles. The study is conducted by following the behavior of four critical concentrations with size k: (i) [(ii)] standard isotropic[oriented] percolation threshold θ_{c,k}[ϑ_{c,k}], which represents the minimum concentration of occupied sites at which an infinite cluster of occupied nearest-neighbor sites extends from one side of the system to the other. θ_{c,k}[ϑ_{c,k}] is reached by isotropic[oriented] deposition of straight rigid k-mers on an initially empty lattice; and (iii) [(iv)] inverse isotropic[oriented] percolation threshold θ_{c,k}^{i}[ϑ_{c,k}^{i}], which corresponds to the maximum concentration of occupied sites for which connectivity disappears. θ_{c,k}^{i}[ϑ_{c,k}^{i}] is reached after removing isotropic [completely aligned] straight rigid k-mers from an initially fully occupied lattice. θ_{c,k}, ϑ_{c,k}, θ_{c,k}^{i}, and ϑ_{c,k}^{i} are determined for a wide range of k (2≤k≤512). The obtained results indicate that (1)θ_{c,k}[θ_{c,k}^{i}] exhibits a nonmonotonous dependence on the size k. It decreases[increases] for small particle sizes, goes through a minimum[maximum] at around k=11, and finally increases and asymptotically converges towards a definite value for large segments θ_{c,k→∞}=0.500(2) [θ_{c,k→∞}^{i}=0.500(1)]; (2)ϑ_{c,k}[ϑ_{c,k}^{i}] depicts a monotonous behavior in terms of k. It rapidly increases[decreases] for small particle sizes and asymptotically converges towards a definite value for infinitely long k-mers ϑ_{c,k→∞}=0.5334(6) [ϑ_{c,k→∞}^{i}=0.4666(6)]; (3) for both isotropic and perfectly oriented models, the curves of standard and inverse percolation thresholds are symmetric to each other with respect to the line θ(ϑ)=0.5. Thus a complementary property is found θ_{c,k}+θ_{c,k}^{i}=1 (and ϑ_{c,k}+ϑ_{c,k}^{i}=1) which has not been observed in other regular lattices. This condition is analytically validated by using exact enumeration of configurations for small systems, and (4) in all cases, the critical concentration curves divide the θ space in a percolating region and a nonpercolating region. These phases extend to infinity in the space of the parameter k so that the model presents percolation transition for the whole range of k.
已进行数值模拟和有限尺寸标度分析,以研究三角形晶格上直刚性杆的标准渗流和逆渗流。在标准渗流的情况下,晶格最初为空。然后,线性k聚体(沿晶格方向之一占据k个连续位点的粒子)被随机且顺序地沉积在晶格上。在逆渗流的情况下,过程从初始构型开始,其中所有晶格位点都被单个单体占据(每个单体占据一个晶格位点),因此,晶格的相对两侧通过最近邻被占据位点相连。然后通过从晶格中随机移除连续的k个单体组(线性k聚体)来稀释系统。沉积/移除过程使用两种方案:各向同性方案,其中线性物体在任何晶格方向上以相同概率进行沉积(移除);以及各向异性(完全定向)方案,其中一个晶格方向在沉积(移除)粒子时具有优先权。通过跟踪四个与尺寸k相关的临界浓度的行为来进行研究:(i)[(ii)]标准各向同性[定向]渗流阈值θ_{c,k}[ϑ_{c,k}],它表示被占据的最近邻位点的无限簇从系统一侧延伸到另一侧时被占据位点的最小浓度。θ_{c,k}[ϑ_{c,k}]通过在初始为空的晶格上各向同性[定向]沉积直刚性k聚体来达到;以及(iii)[(iv)]逆各向同性[定向]渗流阈值θ_{c,k}^{i}[ϑ_{c,k}^{i}],它对应于连通性消失时被占据位点的最大浓度。θ_{c,k}^{i}[ϑ_{c,k}^{i}]是在从初始完全被占据的晶格中移除各向同性[完全对齐]的直刚性k聚体之后达到的。对于广泛的k值(2≤k≤512)确定了θ_{c,k}、ϑ_{c,k}、θ_{c,k}^{i}和ϑ_{c,k}^{i}。所得结果表明:(1)θ_{c,k}[θ_{c,k}^{i}]对尺寸k表现出非单调依赖性。对于小颗粒尺寸它减小[增加],在k = 11左右经历最小值[最大值],并且对于大段最终增加并渐近收敛到一个确定值θ_{c,k→∞}=0.500(2) [θ_{c,k→∞}^{i}=0.500(1)];(2)ϑ_{c,k}[ϑ_{c,k}^{i}]在k方面呈现单调行为。对于小颗粒尺寸它迅速增加[减小],并且对于无限长的k聚体渐近收敛到一个确定值ϑ_{c,k→∞}=0.5334(6) [ϑ_{c,k→∞}^{i}=0.4666(6)];(3)对于各向同性和完全定向模型,标准和逆渗流阈值曲线相对于θ(ϑ)=0.5线彼此对称。因此发现了一个互补性质θ_{c,k}+θ_{c,k}^{i}=1(并且ϑ_{c,k}+ϑ_{c,k}^{i}=1),这在其他规则晶格中未被观察到。通过对小系统构型的精确枚举对该条件进行了解析验证,并且(4)在所有情况下,临界浓度曲线在渗流区域和非渗流区域划分θ空间。这些相在参数k的空间中延伸到无穷大,使得该模型在整个k范围内呈现渗流转变。