Suppr超能文献

通过从双层方格晶格中移除直的半刚性棒进行逆渗流

Inverse percolation by removing straight semirigid rods from bilayer square lattices.

作者信息

Pimentel F M L, Félix N De La Cruz, Ramirez L S, Ramirez-Pastor A J

机构信息

Instituto de Física (IFIS), Facultad de Ciencias, Universidad Autónoma de Santo Domingo-FONDOCYT, Av. Alma Mater, Santo Domingo 10105, Dominican Republic.

Departamento de Física, Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis-CONICET, Ejército de Los Andes 950, D5700HHW, San Luis, Argentina.

出版信息

Phys Rev E. 2023 Jun;107(6-1):064128. doi: 10.1103/PhysRevE.107.064128.

Abstract

Numerical simulations and finite-size scaling analysis have been carried out to study the problem of inverse percolation by removing semirigid rods from a L×L square lattice that contains two layers (and M=L×L×2 sites). The process starts with an initial configuration where all lattice sites are occupied by single monomers (each monomer occupies one lattice site) and, consequently, the opposite sides of the lattice are connected by nearest-neighbor occupied sites. Then the system is diluted by removing groups of k consecutive monomers according to a generalized random sequential adsorption mechanism. The study is conducted by following the behavior of two critical concentrations with size k: (1) jamming coverage θ_{j,k}, which represents the concentration of occupied sites at which the jamming state is reached, and (2) inverse percolation threshold θ_{c,k}, which corresponds to the maximum concentration of occupied sites for which connectivity disappears. The obtained results indicate that (1) the jamming coverage exhibits an increasing dependence on the size k-it rapidly increases for small values of k and asymptotically converges towards a definite value for infinitely large k sizes θ_{j,k→∞}≈0.2701-and (2) the inverse percolation threshold is a decreasing function of k in the range 1≤k≤17. For k≥18, all jammed configurations are percolating states (the lattice remains connected even when the highest allowed concentration of removed sites is reached) and, consequently, there is no nonpercolating phase. This finding contrasts with the results obtained in literature for a complementary problem, where straight rigid k-mers are randomly and irreversibly deposited on a square lattice forming two layers. In this case, percolating and nonpercolating phases extend to infinity in the space of the parameter k and the model presents percolation transition for the whole range of k. The results obtained in the present study were also compared with those reported for the case of inverse percolation by removal of rigid linear k-mers from a square monolayer. The differences observed between monolayer and bilayer problems were discussed in terms of vulnerability and network robustness. Finally, the accurate determination of the critical exponents ν, β, and γ reveals that the percolation phase transition involved in the system has the same universality class as the standard percolation problem.

摘要

已进行数值模拟和有限尺寸标度分析,以研究通过从包含两层(且有(M = L×L×2)个格点)的(L×L)方形晶格中移除半刚性杆来解决逆渗流问题。该过程从初始构型开始,此时所有晶格位点都被单个单体占据(每个单体占据一个晶格位点),因此,晶格的相对两侧通过最近邻被占据位点相连。然后根据广义随机顺序吸附机制,通过移除连续(k)个单体的组来使系统稀释。该研究通过跟踪两个与尺寸(k)相关的临界浓度的行为来进行:(1)堵塞覆盖率(\theta_{j,k}),它表示达到堵塞状态时被占据位点的浓度;(2)逆渗流阈值(\theta_{c,k}),它对应于连通性消失时被占据位点的最大浓度。所得结果表明:(1)堵塞覆盖率对尺寸(k)的依赖性增加——对于小的(k)值它迅速增加,对于无限大的(k)尺寸渐近收敛到一个确定值(\theta_{j,k→∞}≈0.2701);(2)在(1≤k≤17)范围内,逆渗流阈值是(k)的递减函数。对于(k≥18),所有堵塞构型都是渗流状态(即使达到移除位点的最高允许浓度,晶格仍保持连通),因此不存在非渗流相。这一发现与文献中针对一个互补问题所得结果形成对比,在该互补问题中,直的刚性(k)聚体随机且不可逆地沉积在形成两层的方形晶格上。在这种情况下,渗流相和非渗流相在参数(k)的空间中延伸至无穷大,并且该模型在整个(k)范围内呈现渗流转变。本研究所得结果还与从方形单层中移除刚性线性(k)聚体的逆渗流情况所报道的结果进行了比较。从脆弱性和网络稳健性方面讨论了单层和双层问题之间观察到的差异。最后,对临界指数(\nu)、(\beta)和(\gamma)的精确确定表明,该系统中涉及的渗流相变与标准渗流问题具有相同的普适类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验