Buzzicotti Michele, Tauzin Guillaume
Department of Physics and INFN, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy.
Chair of Applied Mathematics and Numerical Analysis, Bergische Universität Wuppertal, Gaußstrasse 20, 42119 Wuppertal, Germany.
Phys Rev E. 2021 Jul;104(1-2):015302. doi: 10.1103/PhysRevE.104.015302.
We present a quantitative analysis of the inertial range statistics produced by entropic lattice Boltzmann method (ELBM) in the context of three-dimensional homogeneous and isotropic turbulence. ELBM is a promising mesoscopic model particularly interesting for the study of fully developed turbulent flows because of its intrinsic scalability and its unconditional stability. In the hydrodynamic limit, the ELBM is equivalent to the Navier-Stokes equations with an extra eddy viscosity term. From this macroscopic formulation, we have derived a new hydrodynamical model that can be implemented as a large-eddy simulation closure. This model is not positive definite, hence, able to reproduce backscatter events of energy transferred from the subgrid to the resolved scales. A statistical comparison of both mesoscopic and macroscopic entropic models based on the ELBM approach is presented and validated against fully resolved direct numerical simulations. Besides, we provide a second comparison of the ELBM with respect to the well-known Smagorinsky closure. We found that ELBM is able to extend the energy spectrum scaling range preserving at the same time the simulation stability. Concerning the statistics of higher order, inertial range observables, ELBM accuracy is shown to be comparable with other approaches such as Smagorinsky model.
我们对熵格子玻尔兹曼方法(ELBM)在三维均匀各向同性湍流背景下产生的惯性范围统计量进行了定量分析。ELBM是一个很有前景的介观模型,因其固有的可扩展性和无条件稳定性,对于研究充分发展的湍流特别有意义。在流体动力学极限下,ELBM等同于带有额外涡粘性项的纳维 - 斯托克斯方程。基于这个宏观公式,我们推导了一个新的流体动力学模型,该模型可作为大涡模拟封闭模型来实现。这个模型不是正定的,因此能够再现从亚格子尺度到解析尺度的能量反向散射事件。给出了基于ELBM方法的介观和宏观熵模型的统计比较,并与完全解析的直接数值模拟进行了验证。此外,我们还对ELBM与著名的斯马戈林斯基封闭模型进行了第二次比较。我们发现ELBM能够扩展能量谱标度范围,同时保持模拟的稳定性。关于高阶惯性范围可观测量的统计,ELBM的精度与其他方法(如斯马戈林斯基模型)相当。