De Bellis Alfredo, Pastor-Satorras Romualdo, Castellano Claudio
Dipartimento di Fisica, Sapienza Università di Roma, P. le A. Moro 2, I-00185 Roma, Italy.
Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4, 08034 Barcelona, Spain.
Phys Rev E. 2021 Jul;104(1-1):014306. doi: 10.1103/PhysRevE.104.014306.
In the study of epidemic dynamics a fundamental question is whether a pathogen initially affecting only one individual will give rise to a limited outbreak or to a widespread pandemic. The answer to this question crucially depends not only on the parameters describing the infection and recovery processes but also on where, in the network of interactions, the infection starts from. We study the dependence on the location of the initial seed for the susceptible-infected-susceptible epidemic dynamics in continuous time on networks. We first derive analytical predictions for the dependence on the initial node of three indicators of spreading influence (probability to originate an infinite outbreak, average duration, and size of finite outbreaks) and compare them with numerical simulations on random uncorrelated networks, finding a very good agreement. We then show that the same theoretical approach works fairly well also on a set of real-world topologies of diverse nature. We conclude by briefly investigating which topological network features determine deviations from the theoretical predictions.
在流行病动力学的研究中,一个基本问题是,最初仅感染一个个体的病原体将会引发有限的爆发还是广泛的大流行。这个问题的答案不仅关键取决于描述感染和恢复过程的参数,还取决于在相互作用网络中感染从何处开始。我们研究了在网络上连续时间的易感 - 感染 - 易感流行病动力学中,初始种子位置的依赖性。我们首先推导了关于传播影响的三个指标(引发无限爆发的概率、平均持续时间和有限爆发的规模)对初始节点依赖性的解析预测,并将其与随机不相关网络上的数值模拟进行比较,发现吻合度非常高。然后我们表明,同样的理论方法在一组性质各异的真实世界拓扑结构上也相当有效。最后,我们通过简要研究哪些拓扑网络特征会导致与理论预测的偏差来得出结论。