Suppr超能文献

具有复杂拓扑结构的网络上的传播动力学。

Propagation dynamics on networks featuring complex topologies.

作者信息

Hébert-Dufresne Laurent, Noël Pierre-André, Marceau Vincent, Allard Antoine, Dubé Louis J

机构信息

Département de Physique, de Génie Physique, et d'Optique, Université Laval, Québec, Québec, Canada G1V 0A6.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Sep;82(3 Pt 2):036115. doi: 10.1103/PhysRevE.82.036115. Epub 2010 Sep 27.

Abstract

Analytical description of propagation phenomena on random networks has flourished in recent years, yet more complex systems have mainly been studied through numerical means. In this paper, a mean-field description is used to coherently couple the dynamics of the network elements (such as nodes, vertices, individuals, etc.) on the one hand and their recurrent topological patterns (such as subgraphs, groups, etc.) on the other hand. In a susceptible-infectious-susceptible (SIS) model of epidemic spread on social networks with community structure, this approach yields a set of ordinary differential equations for the time evolution of the system, as well as analytical solutions for the epidemic threshold and equilibria. The results obtained are in good agreement with numerical simulations and reproduce the behavior of random networks in the appropriate limits which highlights the influence of topology on the processes. Finally, it is demonstrated that our model predicts higher epidemic thresholds for clustered structures than for equivalent random topologies in the case of networks with zero degree correlation.

摘要

近年来,对随机网络上传播现象的分析描述蓬勃发展,然而更复杂的系统主要是通过数值方法进行研究的。在本文中,一种平均场描述被用于一方面连贯地耦合网络元素(如节点、顶点、个体等)的动力学,另一方面耦合它们的循环拓扑模式(如子图、群组等)。在具有社区结构的社交网络上的易感-感染-易感(SIS)流行病传播模型中,这种方法产生了一组用于系统时间演化的常微分方程,以及流行病阈值和平衡点的解析解。所获得的结果与数值模拟结果高度吻合,并在适当的极限情况下重现了随机网络的行为,这突出了拓扑结构对这些过程的影响。最后,结果表明,在零度相关性的网络情况下,我们的模型预测聚类结构的流行病阈值高于等效随机拓扑结构的流行病阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验