Becker Tobias, Wu Ling-Na, Eckardt André
Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany.
Phys Rev E. 2021 Jul;104(1-1):014110. doi: 10.1103/PhysRevE.104.014110.
Away from equilibrium, the properties of open quantum systems depend on the details of their environment. A microscopic derivation of a master equation (ME) is therefore crucial. Of particular interest are Lindblad-type equations, not only because they provide the most general class of Markovian MEs, but also since they are the starting point for efficient quantum trajectory simulations. Lindblad-type MEs are commonly derived from the Born-Markov-Redfield equation via a rotating-wave approximation (RWA). However the RWA is valid only for ultraweak system-bath coupling and often fails to accurately describe nonequilibrium processes. Here we derive an alternative Lindbladian approximation to the Redfield equation, which does not rely on ultraweak system-bath coupling. Applying it to an extended Hubbard model coupled to Ohmic baths, we show that, especially away from equilibrium, it provides a good approximation in large parameter regimes where the RWA fails.
远离平衡态时,开放量子系统的性质取决于其环境的细节。因此,主方程(ME)的微观推导至关重要。特别值得关注的是林德布拉德型方程,这不仅是因为它们提供了最一般的马尔可夫主方程类别,还因为它们是高效量子轨迹模拟的起点。林德布拉德型主方程通常通过旋转波近似(RWA)从玻恩 - 马尔可夫 - 雷菲尔德方程推导得出。然而,旋转波近似仅对超弱的系统 - 浴耦合有效,并且常常无法准确描述非平衡过程。在此,我们推导了一种替代的林德布拉德型近似来处理雷菲尔德方程,该近似不依赖于超弱的系统 - 浴耦合。将其应用于与欧姆浴耦合的扩展哈伯德模型,我们表明,特别是在远离平衡态时,它在旋转波近似失效的大参数区域提供了良好的近似。