Zaafouri Zaineb, Batôt Guillaume, Nieto-Draghi Carlos, Rotenberg Benjamin, Bauer Daniela, Coasne Benoit
IFP Energies Nouvelles, 1 & 4 Av. Bois Préau, 92852 Rueil Malmaison, France and Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.
IFP Energies Nouvelles, 1 & 4 Av. Bois Préau, 92852 Rueil Malmaison, France.
Phys Rev E. 2021 Jul;104(1-2):015314. doi: 10.1103/PhysRevE.104.015314.
A numerical method based on the Lattice Boltzmann formalism is presented to capture the effect of adsorption kinetics on transport in porous media. Through the use of a general adsorption operator, canonical models such as Henry and Langmuir adsorption as well as more complex adsorption mechanisms involving collective behavior with lateral interactions and surface aggregation can be investigated using this versatile model. By extending the description of adsorption phenomena to kinetic regimes with any underlying adsorption model, this effective technique allows assessing the coupled dynamics resulting from advection, diffusion, and adsorption in pores not only in stationary conditions but also under transient conditions (i.e., in regimes where the adsorbed amount evolves with time due to diffusion and advection). As illustrated in this paper, the development of such an approach provides a simple tool to determine the reciprocal effect of molecular flow and dispersion on adsorption kinetics. In this context, the use of a Lattice Boltzmann-based approach is important as it allows considering porous media of any morphology and topology. Beyond fundamental implications, this efficient method allows treating real engineering conditions such as pollutant dispersion or surfactant injection in a flowing liquid in soils and porous rocks.
提出了一种基于格子玻尔兹曼形式的数值方法,以捕捉吸附动力学对多孔介质中输运的影响。通过使用通用吸附算子,可以利用这个通用模型研究亨利吸附和朗缪尔吸附等经典模型,以及涉及横向相互作用和表面聚集的集体行为的更复杂吸附机制。通过将吸附现象的描述扩展到具有任何潜在吸附模型的动力学区域,这种有效技术不仅可以在静态条件下,而且可以在瞬态条件下(即由于扩散和对流导致吸附量随时间变化的区域)评估孔隙中平流、扩散和吸附产生的耦合动力学。如本文所示,这种方法的发展提供了一个简单工具,以确定分子流和弥散对吸附动力学的相互影响。在这种情况下,基于格子玻尔兹曼的方法的使用很重要,因为它允许考虑任何形态和拓扑结构的多孔介质。除了具有基本意义外,这种有效方法还可以处理实际工程条件,如土壤和多孔岩石中流动液体中的污染物弥散或表面活性剂注入。