Suppr超能文献

不同吸附条件和动力学下多孔网络中从瞬态传输到稳态传输

From Transient to Stationary Transport in Porous Networks under Various Adsorption Conditions and Kinetics.

作者信息

Bauer Daniela, Zaafouri Zaineb, Batôt Guillaume, Coasne Benoit

机构信息

IFP Energies Nouvelles, 1 & 4 Av. Bois Préau, 92852 Rueil Malmaison, France.

Université Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France.

出版信息

J Phys Chem B. 2022 Aug 25;126(33):6125-6135. doi: 10.1021/acs.jpcb.2c02769. Epub 2022 Aug 16.

Abstract

We investigate the interplay between adsorption and transport in a two-dimensional porous medium by means of an extended Lattice Boltzmann technique within the Two-Relaxation-Time framework. We focus on two canonical adsorption thermodynamics and kinetics formalisms: (1) the Henry model in which the adsorbed amount scales linearly with the free adsorbate concentration and (2) the Langmuir model that accounts for surface saturation upon adsorption. We simulate transport of adsorbing and nonadsorbing particles to investigate the effect of the adsorption/desorption ratio , initial free adsorbate concentration , surface saturation Γ, and Peclet numbers Pe on their dispersion behavior. In all cases, despite marked differences between the different adsorption models, the three following transport regimes are observed: diffusion-dominated regime, transient regime and Gaussian or nearly Gaussian dispersion regime. On the one hand, at short times, the intermediate transient regime strongly depends on the system's parameters with the shape of the concentration field at a given time being dependent on the amount of particles adsorbed shortly after injection. On the other hand, at longer times, the influence of the initial condition attenuates as particles sample sufficiently the adsorbed and nonadsorbed states. Once such dynamical equilibrium is reached, transport becomes Gaussian (i.e., normal) or nearly Gaussian in the asymptotic regime. Interestingly, the characteristic time scale to reach equilibrium, which varies drastically with the system's parameters, can be much longer than the actual simulation time. In practice, such results reflect many experimental situations such as in water treatment where dispersion is found to remain anomalous (non-Gaussian), even if transport is considered over long macroscopic times.

摘要

我们借助双弛豫时间框架内的扩展格子玻尔兹曼技术,研究二维多孔介质中吸附与输运之间的相互作用。我们关注两种典型的吸附热力学和动力学形式:(1)亨利模型,其中吸附量与游离吸附质浓度呈线性比例关系;(2)朗缪尔模型,该模型考虑了吸附时的表面饱和现象。我们模拟吸附性和非吸附性颗粒的输运,以研究吸附/解吸比、初始游离吸附质浓度、表面饱和度Γ和佩克莱数Pe对其弥散行为的影响。在所有情况下,尽管不同吸附模型之间存在显著差异,但仍观察到以下三种输运模式:扩散主导模式、瞬态模式和高斯或近似高斯弥散模式。一方面,在短时间内,中间瞬态模式强烈依赖于系统参数,给定时间的浓度场形状取决于注入后不久吸附颗粒的数量。另一方面,在较长时间内,随着颗粒充分采样吸附态和非吸附态,初始条件的影响会减弱。一旦达到这种动态平衡,在渐近区域输运就会变为高斯(即正态)或近似高斯分布。有趣的是,达到平衡的特征时间尺度随系统参数变化很大,可能比实际模拟时间长得多。在实际中,这些结果反映了许多实验情况,例如在水处理中,即使在宏观长时间内考虑输运,弥散仍被发现保持异常(非高斯)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验