Suppr超能文献

通过核γ共振时域干涉测量实验对乔哈里-戈尔茨坦β弛豫的微观理解。

Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments.

作者信息

Ngai K L

机构信息

CNR-IPCF, Largo B. Pontecorvo 3, I-56127 Pisa, Italy.

出版信息

Phys Rev E. 2021 Jul;104(1-2):015103. doi: 10.1103/PhysRevE.104.015103.

Abstract

Traditionally the study of dynamics of glass-forming materials has been focused on the structural α relaxation. However, in recent years experimental evidence has revealed that a secondary β relaxation belonging to a special class, called the Johari-Goldstein (JG) β relaxation, has properties strongly linked to the primary α relaxation. By invoking the principle of causality, the relation implies the JG β relaxation is fundamental and indispensable for generating the α relaxation, and the properties of the latter are inherited from the former. The JG β relaxation is observed together with the α relaxation mostly by dielectric spectroscopy. The macroscopic nature of the data allows the use of arbitrary or unproven procedures to analyze the data. Thus the results characterizing the JG β relaxation and the relation of its relaxation time τ_{β} to the α-relaxation time τ_{α} obtained can be equivocal and controversial. Coming to the rescue is the nuclear resonance time-domain-interferometry (TDI) technique covering a wide time range (10^{-9}-10^{-5}s) and a scattering vector q range (9.6-40nm^{-1}). TDI experiments have been carried out on four glass formers, ortho-terphenyl [M. Saito et al., Phys. Rev. Lett. 109, 115705 (2012)10.1103/PhysRevLett.109.115705], polybutadiene [T. Kanaya et al., J. Chem. Phys. 140, 144906 (2014)10.1063/1.4869541], 5-methyl-2-hexanol [F. Caporaletti et al., Sci. Rep. 9, 14319 (2019)10.1038/s41598-019-50824-7], and 1-propanol [F. Caporaletti et al., Nat. Commun. 12, 1867 (2021)10.1038/s41467-021-22154-8]. In this paper the TDI data are reexamined in conjunction with dielectric and neutron scattering data. The results show the JG β relaxation observed by dielectric spectroscopy is heterogeneous and comprises processes with different length scales. A process with a longer length scale has a longer relaxation time. TDI data also prove the primitive relaxation time τ_{0} of the coupling model falls within the distribution of the TDI q-dependent JG β-relaxation times. This important finding explains why the experimental dielectric JG β-relaxation times τ_{β}(T,P) is approximately equal to τ_{0}(T,P) as found in many glass formers at various temperature T and pressure P. The result, τ_{β}(T,P)≈τ_{0}(T,P), in turn explains why the ratio τ_{α}(T,P)/τ_{β}(T,P) is invariant to changes of T and pressure P at constant τ_{α}(T,P), the α-relaxation time.

摘要

传统上,对玻璃形成材料动力学的研究一直集中在结构α弛豫上。然而,近年来的实验证据表明,属于一类特殊的二级β弛豫,即所谓的乔哈里 - 戈尔茨坦(JG)β弛豫,具有与一级α弛豫紧密相关的性质。通过援引因果关系原理,这种关系意味着JGβ弛豫对于产生α弛豫是基本且不可或缺的,并且α弛豫的性质是从JGβ弛豫继承而来的。JGβ弛豫大多通过介电谱与α弛豫一起被观测到。数据的宏观性质允许使用任意或未经证实的程序来分析数据。因此,表征JGβ弛豫的结果及其弛豫时间τβ与所获得的α弛豫时间τα之间的关系可能是模棱两可且有争议的。核共振时域干涉测量(TDI)技术应运而生,它涵盖了很宽的时间范围(10−9 - 10−5秒)和散射矢量q范围(9.6 - 40纳米−1)。已经对四种玻璃形成体进行了TDI实验,分别是邻三联苯[M. 斋藤等人,《物理评论快报》109,115705(2012)10.1103/PhysRevLett.109.115705]、聚丁二烯[T. 金谷等人,《化学物理杂志》140,144906(2014)10.1063/1.4869541]、5 - 甲基 - 2 - 己醇[F. 卡波拉莱蒂等人,《科学报告》9,14319(2019)10.1038/s41598 - 019 - 50824 - 7]和1 - 丙醇[F. 卡波拉莱蒂等人,《自然通讯》12,1867(2021)10.1038/s41467 - 021 - 22154 - 8]。在本文中,结合介电和中子散射数据对TDI数据进行了重新审视。结果表明,通过介电谱观测到的JGβ弛豫是不均匀的,并且包含具有不同长度尺度的过程。具有较长长度尺度的过程具有较长的弛豫时间。TDI数据还证明了耦合模型的原始弛豫时间τ0落在TDI的q依赖的JGβ弛豫时间分布范围内。这一重要发现解释了为什么在许多玻璃形成体中,在各种温度T和压力P下,实验测得的介电JGβ弛豫时间τβ(T,P)大约等于τ0(T,P)。结果,τβ(T,P)≈τ0(T,P),反过来又解释了为什么在α弛豫时间τα不变的情况下,τα(T,P)/τβ(T,P)的比值对于温度T和压力P的变化是不变的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验