Ströker Philipp, Meier Karsten
Institut für Thermodynamik, Helmut-Schmidt-Universität/Universität der Bundeswehr Hamburg, Holstenhofweg 85, 22043 Hamburg, Germany.
Phys Rev E. 2023 Jun;107(6-1):064112. doi: 10.1103/PhysRevE.107.064112.
Molecular expressions for thermodynamic properties and derivatives of the entropy up to third order in the adiabatic grand-isochoric μVL and adiabatic grand-isobaric μpR ensembles are systematically derived using the methodology developed by Lustig for the microcanonical and canonical ensembles [J. Chem. Phys. 100, 3048 (1994)10.1063/1.466446; Mol. Phys. 110, 3041 (2012)10.1080/00268976.2012.695032]. They are expressed by phase-space functions, which represent derivatives of the entropy with respect to the chemical potential, the volume, and the Hill energy L in the μVL ensemble and with respect to the chemical potential, the pressure, and the Ray energy R in the μpR ensemble. The derived expressions are validated for both ensembles by Monte Carlo simulations for the simple Lennard-Jones model fluid at three selected state points.
利用卢斯蒂格为微正则系综和正则系综开发的方法[《化学物理杂志》100, 3048 (1994)10.1063/1.466446;《分子物理学》110, 3041 (2012)10.1080/00268976.2012.695032],系统地推导了绝热巨等容μVL系综和绝热巨等压μpR系综中热力学性质的分子表达式以及熵的三阶导数。它们由相空间函数表示,在μVL系综中,这些相空间函数代表熵相对于化学势、体积和希尔能量L的导数;在μpR系综中,代表熵相对于化学势、压力和雷能量R的导数。通过对简单的 Lennard-Jones 模型流体在三个选定状态点进行蒙特卡罗模拟,验证了这两个系综的推导表达式。