Suppr超能文献

非球形颗粒堆积的力学响应:以循环线二维堆积为例

Mechanical response of packings of nonspherical particles: A case study of two-dimensional packings of circulo-lines.

作者信息

Zhang Jerry, VanderWerf Kyle, Li Chengling, Zhang Shiyun, Shattuck Mark D, O'Hern Corey S

机构信息

Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, USA.

Department of Physics, Yale University, New Haven, Connecticut 06520, USA.

出版信息

Phys Rev E. 2021 Jul;104(1-1):014901. doi: 10.1103/PhysRevE.104.014901.

Abstract

We investigate the mechanical response of jammed packings of circulo-lines in two spatial dimensions, interacting via purely repulsive, linear spring forces, as a function of pressure P during athermal, quasistatic isotropic compression. The surface of a circulo-line is defined as the collection of points that is equidistant to a line; circulo-lines are composed of a rectangular central shaft with two semicircular end caps. Prior work has shown that the ensemble-averaged shear modulus for jammed disk packings scales as a power law, 〈G(P)〉∼P^{β}, with β∼0.5, over a wide range of pressure. For packings of circulo-lines, we also find robust power-law scaling of 〈G(P)〉 over the same range of pressure for aspect ratios R≳1.2. However, the power-law scaling exponent β∼0.8-0.9 is much larger than that for jammed disk packings. To understand the origin of this behavior, we decompose 〈G〉 into separate contributions from geometrical families, G_{f}, and from changes in the interparticle contact network, G_{r}, such that 〈G〉=〈G_{f}〉+〈G_{r}〉. We show that the shear modulus for low-pressure geometrical families for jammed packings of circulo-lines can both increase and decrease with pressure, whereas the shear modulus for low-pressure geometrical families for jammed disk packings only decreases with pressure. For this reason, the geometrical family contribution 〈G_{f}〉 is much larger for jammed packings of circulo-lines than for jammed disk packings at finite pressure, causing the increase in the power-law scaling exponent for 〈G(P)〉.

摘要

我们研究了二维空间中圆形线状体紧密堆积的力学响应,这些圆形线状体通过纯排斥性的线性弹簧力相互作用,作为无热、准静态各向同性压缩过程中压力(P)的函数。圆形线状体的表面定义为与一条直线等距的点的集合;圆形线状体由一个带有两个半圆形端盖的矩形中心轴组成。先前的研究表明,在很宽的压力范围内,紧密堆积的圆盘的系综平均剪切模量按幂律缩放,即(\langle G(P)\rangle\sim P^{\beta}),其中(\beta\sim0.5)。对于圆形线状体的堆积,在相同的压力范围内,对于纵横比(R\gtrsim1.2),我们也发现了(\langle G(P)\rangle)的稳健幂律缩放。然而,幂律缩放指数(\beta\sim0.8 - 0.9)比紧密堆积的圆盘的指数大得多。为了理解这种行为的起源,我们将(\langle G\rangle)分解为来自几何族的单独贡献(G_f)和来自粒子间接触网络变化的贡献(G_r),使得(\langle G\rangle=\langle G_f\rangle+\langle G_r\rangle)。我们表明,对于圆形线状体紧密堆积的低压几何族,其剪切模量会随着压力的增加而增加或减小,而对于紧密堆积的圆盘的低压几何族,其剪切模量仅随压力减小。因此,在有限压力下,对于圆形线状体紧密堆积,几何族贡献(\langle G_f\rangle)比紧密堆积的圆盘大得多,导致(\langle G(P)\rangle)的幂律缩放指数增加。

相似文献

9
Underconstrained jammed packings of nonspherical hard particles: ellipses and ellipsoids.非球形硬颗粒的欠约束堵塞堆积:椭圆和椭球体
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 May;75(5 Pt 1):051304. doi: 10.1103/PhysRevE.75.051304. Epub 2007 May 10.

本文引用的文献

4
Jamming of Deformable Polygons.可变形多边形的碰撞。
Phys Rev Lett. 2018 Dec 14;121(24):248003. doi: 10.1103/PhysRevLett.121.248003.
5
The physics of jamming for granular materials: a review.颗粒物质的阻塞物理学:综述。
Rep Prog Phys. 2019 Jan;82(1):012601. doi: 10.1088/1361-6633/aadc3c. Epub 2018 Aug 22.
7
Elastic moduli and vibrational modes in jammed particulate packings.致密颗粒填料中的弹性模量和振动模式。
Phys Rev E. 2016 Jun;93(6):062905. doi: 10.1103/PhysRevE.93.062905. Epub 2016 Jun 20.
8
Protocol dependence of the jamming transition.协议依赖性的干扰过渡。
Phys Rev E. 2016 Jan;93(1):012901. doi: 10.1103/PhysRevE.93.012901. Epub 2016 Jan 11.
10
Microscopic approach to the nonlinear elasticity of compressed emulsions.压缩乳液非线性弹性的微观研究方法。
Phys Rev Lett. 2013 Jan 25;110(4):048302. doi: 10.1103/PhysRevLett.110.048302. Epub 2013 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验