Mizuno Hideyuki, Saitoh Kuniyasu, Silbert Leonardo E
Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany.
Faculty of Engineering Technology, MESA+, University of Twente, 7500 AE Enschede, The Netherlands.
Phys Rev E. 2016 Jun;93(6):062905. doi: 10.1103/PhysRevE.93.062905. Epub 2016 Jun 20.
When we elastically impose a homogeneous, affine deformation on amorphous solids, they also undergo an inhomogeneous, nonaffine deformation, which can have a crucial impact on the overall elastic response. To correctly understand the elastic modulus M, it is therefore necessary to take into account not only the affine modulus M_{A}, but also the nonaffine modulus M_{N} that arises from the nonaffine deformation. In the present work, we study the bulk (M=K) and shear (M=G) moduli in static jammed particulate packings over a range of packing fractions φ. The affine M_{A} is determined essentially by the static structural arrangement of particles, whereas the nonaffine M_{N} is related to the vibrational eigenmodes. We elucidate the contribution of each vibrational mode to the nonaffine M_{N} through a modal decomposition of the displacement and force fields. In the vicinity of the (un)jamming transition φ_{c}, the vibrational density of states g(ω) shows a plateau in the intermediate-frequency regime above a characteristic frequency ω^{}. We illustrate that this unusual feature apparent in g(ω) is reflected in the behavior of M_{N}: As φ→φ_{c}, where ω^{}→0, those modes for ω<ω^{} contribute less and less, while contributions from those for ω>ω^{} approach a constant value which results in M_{N} to approach a critical value M_{Nc}, as M_{N}-M_{Nc}∼ω^{*}. At φ_{c} itself, the bulk modulus attains a finite value K_{c}=K_{Ac}-K_{Nc}>0, such that K_{Nc} has a value that remains below K_{Ac}. In contrast, for the critical shear modulus G_{c}, G_{Nc} and G_{Ac} approach the same value so that the total value becomes exactly zero, G_{c}=G_{Ac}-G_{Nc}=0. We explore what features of the configurational and vibrational properties cause such a distinction between K and G, allowing us to validate analytical expressions for their critical values.
当我们对非晶态固体施加均匀的仿射弹性变形时,它们也会经历非均匀的、非仿射的变形,这可能会对整体弹性响应产生关键影响。因此,为了正确理解弹性模量(M),不仅需要考虑仿射模量(M_A),还需要考虑由非仿射变形产生的非仿射模量(M_N)。在本工作中,我们研究了一系列堆积分数(\varphi)下静态堵塞颗粒堆积中的体模量((M = K))和剪切模量((M = G))。仿射模量(M_A)主要由颗粒的静态结构排列决定,而非仿射模量(M_N)与振动本征模式有关。我们通过位移和力场的模态分解来阐明每个振动模式对非仿射模量(M_N)的贡献。在(非)堵塞转变点(\varphi_c)附近,态密度(g(\omega))在高于特征频率(\omega^)的中频区域呈现出一个平台。我们表明,(g(\omega))中这种不寻常的特征反映在(M_N)的行为中:当(\varphi \to \varphi_c)时,其中(\omega^ \to 0),那些(\omega < \omega^)的模式贡献越来越小,而那些(\omega > \omega^)的模式贡献趋近于一个常数,这导致(M_N)趋近于一个临界值(M_{Nc}),因为(M_N - M_{Nc} \sim \omega^*)。在(\varphi_c)处,体模量达到一个有限值(K_c = K_{Ac} - K_{Nc} > 0),使得(K_{Nc})的值保持在(K_{Ac})以下。相比之下,对于临界剪切模量(G_c),(G_{Nc})和(G_{Ac})趋近于相同的值,因此总值恰好为零,(G_c = G_{Ac} - G_{Nc} = 0)。我们探究了构型和振动性质的哪些特征导致了(K)和(G)之间的这种差异,从而使我们能够验证它们临界值的解析表达式。