Li Qinghua, Zhang Wang, Peng Jian, Zhang Wei, Liang Zhixin, Wu Jiawei, Feng Jiajun, Li Haixia, Huang Shaoming
School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
ACS Nano. 2021 Sep 28;15(9):15104-15113. doi: 10.1021/acsnano.1c05458. Epub 2021 Aug 20.
Alloying-type anode materials are regarded as promising alternatives beyond intercalation-type carbonaceous materials for sodium storage owing to the high specific capacities. The rapid capacity decay arising from the huge volume change during Na-ion insertion/extraction, however, impedes the practical application. Herein, we report an ultrafine antimony embedded in a porous carbon nanocomposite (Sb@PC) synthesized facile substitution of the Cu nanoparticles in a metal-organic framework (MOF)-derived octahedron carbon framework for sodium storage. The Sb@PC composite displays an appropriate redox potential (0.5-0.8 V Na/Na) and excellent specific capacities of 634.6, 474.5, and 451.9 mAh g at 0.1, 0.2, and 0.5 A g after 200, 500, and 250 cycles, respectively. Such superior sodium storage performance is primarily ascribed to the MOF-derived three-dimensional porous carbon framework and ultrafine Sb nanoparticles, which not only provides a penetrating network for rapid transfer of charge carriers but also alleviates the agglomeration and volume expansion of Sb during cycling. X-ray diffraction and Raman analysis clearly reveal a five-stage reaction mechanism during sodiation and desodiation and demonstrate the excellent reversibility of Sb@PC for sodium storage. Furthermore, analysis reveals that the robust structural integrity of Sb@PC can withstand continuous Na-ion insertion/extraction. This work may provide insight into the effective design of high-capacity alloying-type anode materials for advanced secondary batteries.
由于具有高比容量,合金型负极材料被认为是超越插层型碳质材料用于钠存储的有前景的替代材料。然而,在钠离子嵌入/脱出过程中由于巨大的体积变化而导致的快速容量衰减阻碍了其实际应用。在此,我们报道了一种嵌入多孔碳纳米复合材料(Sb@PC)中的超细锑,该复合材料通过在金属有机框架(MOF)衍生的八面体碳框架中轻松替代铜纳米颗粒来合成用于钠存储。Sb@PC复合材料显示出合适的氧化还原电位(0.5 - 0.8 V vs Na/Na),并且在200、500和250次循环后,在0.1、0.2和0.5 A g下分别具有634.6、474.5和451.9 mAh g的优异比容量。如此优异的钠存储性能主要归因于MOF衍生的三维多孔碳框架和超细Sb纳米颗粒,它们不仅为电荷载流子的快速转移提供了贯穿网络,而且还减轻了循环过程中Sb的团聚和体积膨胀。X射线衍射和拉曼分析清楚地揭示了在钠化和脱钠过程中的五阶段反应机制,并证明了Sb@PC用于钠存储的优异可逆性。此外,分析表明Sb@PC强大的结构完整性能够承受连续的钠离子嵌入/脱出。这项工作可能为先进二次电池的高容量合金型负极材料的有效设计提供见解。