Suppr超能文献

运用事件时间分析为院外心脏骤停患者建立现场自主循环恢复预测模型。

Use of Time-to-Event Analysis to Develop On-Scene Return of Spontaneous Circulation Prediction for Out-of-Hospital Cardiac Arrest Patients.

机构信息

Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Department of Emergency Medicine, Seoul National University College of Medicine and Hospital, Seoul, Korea; Laboratory of Emergency Medical Services, Seoul National University Hospital Biomedical Research Institute, Seoul, Korea.

Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Korea; Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, Korea.

出版信息

Ann Emerg Med. 2022 Feb;79(2):132-144. doi: 10.1016/j.annemergmed.2021.07.121. Epub 2021 Aug 18.

Abstract

STUDY OBJECTIVE

We aimed to train and validate the time to on-scene return of spontaneous circulation prediction models using time-to-event analysis among out-of-hospital cardiac arrest patients.

METHODS

Using a Korean population-based out-of-hospital cardiac arrest registry, we selected a total of 105,215 adults with presumed cardiac etiologies between 2013 and 2018. Patients from 2013 to 2017 and from 2018 were analyzed for training and test, respectively. We developed 4 time-to-event analyzing models (Cox proportional hazard [Cox], random survival forest, extreme gradient boosting survival, and DeepHit) and 4 classification models (logistic regression, random forest, extreme gradient boosting, and feedforward neural network). Patient characteristics and Utstein elements collected at the scene were used as predictors. Discrimination and calibration were evaluated by Harrell's C-index and integrated Brier score.

RESULTS

Among the 105,215 patients (mean age 70 years and 64% men), 86,314 and 18,901 patients belonged to the training and test sets, respectively. On-scene return of spontaneous circulation was achieved in 5,240 (6.1%) patients in the former set and 1,709 (9.0%) patients in the latter. The proportion of emergency medical services (EMS) management was higher and scene time interval longer in the latter. Median time from EMS scene arrival to on-scene return of spontaneous circulation was 8 minutes for both datasets. Classification models showed similar discrimination and poor calibration power compared to survival models; Cox showed high discrimination with the best calibration (C-index [95% confidence interval]: 0.873 [0.865 to 0.882]; integrated Brier score at 30 minutes: 0.060).

CONCLUSION

Incorporating time-to-event analysis could lead to improved performance in prediction models and contribute to personalized field EMS resuscitation decisions.

摘要

研究目的

我们旨在通过对院外心脏骤停患者的时间事件分析,训练和验证心脏骤停患者自发循环恢复时间的预测模型。

方法

使用基于韩国人群的院外心脏骤停登记处,我们选择了 2013 年至 2018 年间总共 105215 名患有推定心脏病因的成年人。2013 年至 2017 年和 2018 年的患者分别进行分析。我们开发了 4 个时间事件分析模型(Cox 比例风险 [Cox]、随机生存森林、极端梯度提升生存和 DeepHit)和 4 个分类模型(逻辑回归、随机森林、极端梯度提升和前馈神经网络)。将患者特征和现场收集的乌斯泰因元素作为预测因子。使用 Harrell 的 C 指数和综合 Brier 评分评估区分度和校准度。

结果

在 105215 名患者(平均年龄 70 岁,64%为男性)中,86314 名和 18901 名患者分别属于训练组和测试组。在前一组中,有 5240 名(6.1%)患者实现了现场自主循环恢复,在后一组中,有 1709 名(9.0%)患者实现了现场自主循环恢复。后者的紧急医疗服务(EMS)管理比例较高,现场时间间隔较长。两个数据集从 EMS 现场到达现场自主循环恢复的中位数时间为 8 分钟。与生存模型相比,分类模型的区分度相似,校准能力较差;Cox 具有较高的区分度和最佳的校准(C 指数[95%置信区间]:0.873 [0.865 至 0.882];30 分钟时的综合 Brier 评分:0.060)。

结论

纳入时间事件分析可以提高预测模型的性能,并有助于个性化现场 EMS 复苏决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验