Suppr超能文献

基于泛亚复苏结局研究的时间自适应队列模型的机器学习院前实时心脏骤停结局预测(PReCAP)。

Machine learning pre-hospital real-time cardiac arrest outcome prediction (PReCAP) using time-adaptive cohort model based on the Pan-Asian Resuscitation Outcome Study.

机构信息

Department of Emergency Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 115 Irwon-ro Gangnam-gu, Seoul, 06355, Republic of Korea.

Department of Digital Health, Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University, 115 Irwon-ro Gangnam-gu, Seoul, 06355, Republic of Korea.

出版信息

Sci Rep. 2023 Nov 21;13(1):20344. doi: 10.1038/s41598-023-45767-z.

Abstract

To save time during transport, where resuscitation quality can degrade in a moving ambulance, it would be prudent to continue the resuscitation on scene if there is a high likelihood of ROSC occurring at the scene. We developed the pre-hospital real-time cardiac arrest outcome prediction (PReCAP) model to predict ROSC at the scene using prehospital input variables with time-adaptive cohort. The patient survival at discharge from the emergency department (ED), the 30-day survival rate, and the final Cerebral Performance Category (CPC) were secondary prediction outcomes in this study. The Pan-Asian Resuscitation Outcome Study (PAROS) database, which includes out-of-hospital cardiac arrest (OHCA) patients transferred by emergency medical service in Asia between 2009 and 2018, was utilized for this study. From the variables available in the PAROS database, we selected relevant variables to predict OHCA outcomes. Light gradient-boosting machine (LightGBM) was used to build the PReCAP model. Between 2009 and 2018, 157,654 patients in the PAROS database were enrolled in our study. In terms of prediction of ROSC on scene, the PReCAP had an AUROC score between 0.85 and 0.87. The PReCAP had an AUROC score between 0.91 and 0.93 for predicting survived to discharge from ED, and an AUROC score between 0.80 and 0.86 for predicting the 30-day survival. The PReCAP predicted CPC with an AUROC score ranging from 0.84 to 0.91. The feature importance differed with time in the PReCAP model prediction of ROSC on scene. Using the PAROS database, PReCAP predicted ROSC on scene, survival to discharge from ED, 30-day survival, and CPC for each minute with an AUROC score ranging from 0.8 to 0.93. As this model used a multi-national database, it might be applicable for a variety of environments and populations.

摘要

为了节省在转运过程中的时间,因为在移动的救护车上复苏质量可能会下降,如果现场有很高的可能性发生自主循环恢复(ROSC),那么在现场继续复苏将是谨慎的做法。我们开发了院前实时心脏骤停结局预测(PReCAP)模型,该模型使用具有时间适应性队列的院前输入变量来预测现场的 ROSC。本研究的次要预测结局是患者从急诊科(ED)出院时的存活率、30 天存活率和最终的脑功能预后(CPC)。该研究使用了包含 2009 年至 2018 年亚洲地区由紧急医疗服务转院的院外心脏骤停(OHCA)患者的泛亚复苏结局研究(PAROS)数据库。在 PAROS 数据库中可用的变量中,我们选择了相关变量来预测 OHCA 结局。轻梯度提升机(LightGBM)用于构建 PReCAP 模型。在 2009 年至 2018 年期间,PAROS 数据库中有 157654 名患者纳入了本研究。在预测现场的 ROSC 方面,PReCAP 的 AUC 评分为 0.85 至 0.87。PReCAP 预测 ED 出院存活率的 AUC 评分为 0.91 至 0.93,预测 30 天存活率的 AUC 评分为 0.80 至 0.86,预测 CPC 的 AUC 评分为 0.84 至 0.91。PReCAP 预测 CPC 的 AUC 评分为 0.84 至 0.91。在预测现场 ROSC 方面,PReCAP 模型的特征重要性随时间而变化。使用 PAROS 数据库,PReCAP 预测现场的 ROSC、ED 出院存活率、30 天存活率和 CPC 每一分钟的 AUC 评分为 0.8 至 0.93。由于该模型使用了一个多国家数据库,因此它可能适用于各种环境和人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/263e/10663550/ef8f4c296d57/41598_2023_45767_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验