Domadiya Nikunj, Rao Udai Pratap
Department of Computer Engineering, Sardar Vallabhbhai National Institute of Technology, Surat, 395007 India.
SN Comput Sci. 2021;2(6):418. doi: 10.1007/s42979-021-00801-7. Epub 2021 Aug 18.
Association rule mining can be used in healthcare data mining to provide solutions to life-threatening diseases like recent COVID-19. Due to healthcare data privacy concerns, privacy preserving distributed healthcare data mining becomes the primary focus of medical science research. Recently, Chahar et al. (Sādhanā 42:1997-2007, 2017) proposed privacy preserving distributed association rule mining scheme with insecure communication channels. They used the concept of an elliptic curve-based paillier cryptosystem to achieve privacy, authenticity, and integrity. We observed some security vulnerabilities in their privacy preserving association rule mining scheme when implemented with insecure communication channels. We observed that the security vulnerabilities will result in the disclosure of private data of sites (or participants). Furthermore, we propose a secure version of their scheme to solve the security vulnerabilities with insecure communication channels. Theoretical and experimental analysis shows that the proposed scheme has almost equal computation and communication complexities with better securities. A case study on the effectiveness of the proposed approach in combating COVID-19 coronavirus and Breast Cancer is also discussed.
关联规则挖掘可用于医疗保健数据挖掘,为诸如近期的新冠病毒病等危及生命的疾病提供解决方案。由于医疗保健数据隐私问题,隐私保护分布式医疗保健数据挖掘成为医学研究的主要焦点。最近,查哈尔等人(《印度科学院学报》42:1997 - 2007,2017年)提出了一种具有不安全通信信道的隐私保护分布式关联规则挖掘方案。他们使用基于椭圆曲线的Paillier密码系统的概念来实现隐私性、真实性和完整性。当在不安全通信信道上实施时,我们在他们的隐私保护关联规则挖掘方案中观察到了一些安全漏洞。我们发现这些安全漏洞将导致站点(或参与者)的私有数据泄露。此外,我们提出了他们方案的一个安全版本,以解决不安全通信信道带来的安全漏洞。理论和实验分析表明,所提出的方案具有几乎相同的计算和通信复杂度,同时具有更好的安全性。还讨论了一个关于所提出方法在对抗新冠病毒和乳腺癌方面有效性的案例研究。