State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
State Key Laboratory of Pollution Control & Resource Reuse and School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, Jiangsu, 210044, China.
Environ Pollut. 2021 Nov 15;289:117974. doi: 10.1016/j.envpol.2021.117974. Epub 2021 Aug 14.
The rapid development of China's industrial economy and implementation of air pollution controls have led to great changes in sulfur (S), nitrogen (N) and base cation (BC) deposition in the past three decades. We estimated China's anthropogenic BC emissions and simulated BC deposition from 1985 to 2015 with a five-year interval using a multilayer Eulerian model. Deposition of S and N from 2000 to 2015 with a five-year interval was simulated with the EMEP MSC-W model and the Multi-resolution Emission Inventory of China (MEIC). The critical load (CL) and its exceedance were then calculated to evaluate the potential long-term acidification risks. From 1985 to 2005, the BC deposition in China was estimated to have increased by 16 % and then decreased by 33 % till 2015. S deposition was simulated to increase by 49 % from 2000 to 2005 and then decrease by 44 % in 2015, while N deposition increased by 32 % from 2000 to 2010 with a limited reduction afterward. The maximum CL of S was found to increase in 67 % of mainland China areas from 1985 to 2005 and to decline in 55 % of the areas from 2005 to 2015, attributed largely to the changed BC deposition. Consistent with the progress of national controls on SO and NO emissions, the CL exceedance of S increased from 2.9 to 4.6 Mt during 2000-2005 and then decreased to 2.5 Mt in 2015, while that of N increased from 0.4 in 2000 to 1.2 Mt in 2010 and then decreased to 1.1 Mt in 2015. The reduced BC deposition due to particle emission controls partially offset the benefit of SO control on acidification risk reduction in the past decade. It demonstrates the need for a comprehensive strategy for multi-pollutant control against soil acidification.
中国工业经济的快速发展和空气污染控制措施的实施使得过去三十年来硫(S)、氮(N)和碱金属阳离子(BC)沉降发生了很大变化。我们采用多层欧拉模型,以五年为间隔估算了 1985 年至 2015 年中国人为 BC 排放,并模拟了 BC 沉降。采用 EMEP MSC-W 模式和中国多尺度排放清单(MEIC)模拟了 2000 年至 2015 年五年间隔的 S 和 N 沉降。然后计算了临界负荷(CL)及其超标情况,以评估潜在的长期酸化风险。1985 年至 2005 年,中国 BC 沉降估计增加了 16%,然后在 2015 年减少了 33%。模拟结果表明,2000 年至 2005 年 S 沉降增加了 49%,2015 年减少了 44%,而 N 沉降在 2000 年至 2010 年增加了 32%,此后减少有限。发现 1985 年至 2005 年中国大陆地区 S 的最大 CL 增加了 67%,2005 年至 2015 年减少了 55%,这主要归因于 BC 沉降的变化。与国家对 SO 和 NO 排放控制的进展一致,2000-2005 年 S 的 CL 超标从 2.9Mt 增加到 4.6Mt,然后在 2015 年减少到 2.5Mt,而 N 的 CL 从 2000 年的 0.4Mt 增加到 2010 年的 1.2Mt,然后在 2015 年减少到 1.1Mt。由于颗粒排放控制,BC 沉降减少部分抵消了过去十年 SO 控制对酸化风险降低的好处。这表明需要采取综合的多污染物控制策略来防治土壤酸化。