Suppr超能文献

实时呼吸运动补偿肝动脉介入治疗路径图。

Real-time respiratory motion compensated roadmaps for hepatic arterial interventions.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Med Phys. 2021 Oct;48(10):5661-5673. doi: 10.1002/mp.15187. Epub 2021 Sep 4.

Abstract

PURPOSE

During hepatic arterial interventions, catheter or guidewire position is determined by referencing or overlaying a previously acquired static vessel roadmap. Respiratory motion leads to significant discrepancies between the true position and configuration of the hepatic arteries and the roadmap, which makes navigation and accurate catheter placement more challenging and time consuming. The purpose of this work was to develop a dynamic respiratory motion compensated device guidance system and evaluate the accuracy and real-time performance in an in vivo porcine liver model.

METHODS

The proposed device navigation system estimates a respiratory motion model for the hepatic vasculature from prenavigational X-ray image sequences acquired under free-breathing conditions with and without contrast enhancement. During device navigation, the respiratory state is tracked based on live fluoroscopic images and then used to estimate vessel deformation based on the previously determined motion model. Additionally, guidewires and catheters are segmented from the fluoroscopic images using a deep learning approach. The vessel and device information are combined and shown in a real-time display. Two different display modes are evaluated within this work: (1) a compensated roadmap display, where the vessel roadmap is shown moving with the respiratory motion; (2) an inverse compensated device display, where the device representation is compensated for respiratory motion and overlaid on a static roadmap. A porcine study including seven animals was performed to evaluate the accuracy and real-time performance of the system. In each pig, a guidewire and microcatheter with a radiopaque marker were navigated to distal branches of the hepatic arteries under fluoroscopic guidance. Motion compensated displays were generated showing real-time overlays of the vessel roadmap and intravascular devices. The accuracy of the motion model was estimated by comparing the estimated vessel motion to the motion of the X-ray visible marker.

RESULTS

The median (minimum, maximum) error across animals was 1.08 mm (0.92 mm, 1.87 mm). Across different respiratory states and vessel branch levels, the odds of the guidewire tip being shown in the correct vessel branch were significantly higher (odds ratio = 3.12, p < 0.0001) for motion compensated displays compared to a noncompensated display (median probabilities of 86 and 69%, respectively). The average processing time per frame was 17 ms.

CONCLUSIONS

The proposed respiratory motion compensated device guidance system increased the accuracy of the displayed device position relative to the hepatic vasculature. Additionally, the provided display modes combine both vessel and device information and do not require the mental integration of different displays by the physician. The processing times were well within the range of conventional clinical frame rates.

摘要

目的

在肝动脉介入治疗中,导管或导丝的位置是通过参考或叠加之前获得的静态血管路径图来确定的。呼吸运动会导致肝动脉的真实位置和形态与路径图之间产生显著差异,这使得导航和准确放置导管更加具有挑战性和耗时。本研究的目的是开发一种动态呼吸运动补偿的设备导航系统,并在活体猪肝脏模型中评估其准确性和实时性能。

方法

所提出的设备导航系统从在自由呼吸条件下获取的无对比增强和有对比增强的预导航 X 射线图像序列中估计肝血管的呼吸运动模型。在设备导航过程中,根据实时荧光透视图像跟踪呼吸状态,然后根据之前确定的运动模型估计血管变形。此外,使用深度学习方法从荧光透视图像中分割导丝和导管。将血管和设备信息组合并实时显示。在这项工作中评估了两种不同的显示模式:(1)补偿路径图显示,其中显示的路径图随呼吸运动移动;(2)反向补偿设备显示,其中设备表示通过呼吸运动进行补偿并叠加在静态路径图上。在每个猪模型中,在荧光透视引导下将带有不透射线标记的导丝和微导管导航到肝动脉的远端分支。生成运动补偿显示,实时叠加血管路径图和血管内设备。通过比较估计的血管运动与 X 射线可见标记的运动来估计运动模型的准确性。

结果

跨动物的中位数(最小,最大)误差为 1.08 毫米(0.92 毫米,1.87 毫米)。在不同的呼吸状态和血管分支水平下,与非补偿显示相比,导丝尖端显示在正确的血管分支中的可能性明显更高(优势比=3.12,p<0.0001),分别为 86%和 69%。每个帧的平均处理时间为 17 毫秒。

结论

所提出的呼吸运动补偿设备导航系统提高了显示设备位置相对于肝血管的准确性。此外,所提供的显示模式结合了血管和设备信息,并且不需要医生进行不同显示的心理整合。处理时间远远低于常规临床帧率的范围。

相似文献

本文引用的文献

1
Real-Time Thinning Algorithms for 2D and 3D Images using GPU processors.使用GPU处理器的2D和3D图像实时细化算法
J Real Time Image Process. 2020 Oct 28;17(5):1255-1266. doi: 10.1007/s11554-019-00886-7. Epub 2019 May 28.
4
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
9
Methods for abdominal respiratory motion tracking.腹部呼吸运动追踪方法。
Comput Aided Surg. 2014;19(1-3):34-47. doi: 10.3109/10929088.2014.891657. Epub 2014 Apr 10.
10
Chemoembolization of hepatocellular carcinoma.肝细胞癌的化疗栓塞术
Semin Intervent Radiol. 2013 Mar;30(1):3-11. doi: 10.1055/s-0033-1333648.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验