Suppr超能文献

通过膈肌跟踪和弹性运动模型实现的运动补偿冠状动脉介入导航

Motion compensated coronary interventional navigation by means of diaphragm tracking and elastic motion models.

作者信息

Timinger Holger, Krueger Sascha, Dietmayer Klaus, Borgert Joern

机构信息

Department of Measurement, Control and Microtechnology, University of Ulm, Albert-Einstein-Allee 41, 89081 Ulm, Germany.

出版信息

Phys Med Biol. 2005 Feb 7;50(3):491-503. doi: 10.1088/0031-9155/50/3/007.

Abstract

Current catheter tracking in the x-ray catheter laboratory during coronary interventions is performed using 2D fluoroscopy. Although this features real-time navigation on high-resolution images, drawbacks such as overlap and foreshortening exist and hamper the diagnosis and treatment process. An alternative to fluoroscopy-based tracking is device tracking by means of a magnetic tracking system (MTS). Having measured the 3D location of the interventional device, its position can be reconstructed on 3D images or virtual roadmaps of the organ or vessel structure under examination. In this paper, a method is presented which compensates the interventional device location measured by the MTS for organ motion and thus registers it dynamically to a 3D virtual roadmap. The motion compensation is accomplished by using an elastic motion model which is driven by the ECG signal and a respiratory sensor signal derived from ultrasonic diaphragm tracking. The model is updated during the intervention itself, thus allowing for a local refinement in regions which bear a complex geometric structure, such as stenoses and bifurcations. The evaluation is done by means of a phantom-based study using a dynamic heart-phantom. The mean displacement caused by the overall motion of the heart is improved from 10.4+/-4.8 mm in the uncompensated case to 2.1+/-1.2 mm in the motion compensated case.

摘要

在冠状动脉介入治疗期间,当前在X射线导管实验室中进行导管追踪是使用二维荧光透视法。尽管这一方法具有在高分辨率图像上进行实时导航的特点,但存在诸如重叠和缩短等缺点,会妨碍诊断和治疗过程。基于荧光透视的追踪方法的替代方案是借助磁追踪系统(MTS)进行设备追踪。在测量介入设备的三维位置后,其位置可以在被检查器官或血管结构的三维图像或虚拟路线图上重建。本文提出了一种方法,该方法针对器官运动对MTS测量的介入设备位置进行补偿,从而将其动态配准到三维虚拟路线图。运动补偿通过使用由心电图信号和源自超声隔膜追踪的呼吸传感器信号驱动的弹性运动模型来完成。该模型在介入过程中本身会更新,从而允许在具有复杂几何结构的区域(如狭窄和分叉处)进行局部细化。评估是通过使用动态心脏模型的基于模型的研究来完成的。在未补偿情况下,由心脏整体运动引起的平均位移为10.4±4.8毫米,在运动补偿情况下提高到2.1±1.2毫米。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验