Suppr超能文献

低血糖事件在高胰岛素血症患者中的聚类:通过回顾性数据分析扩展数字表型。

Clustering of Hypoglycemia Events in Patients With Hyperinsulinism: Extension of the Digital Phenotype Through Retrospective Data Analysis.

机构信息

Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom.

Department of Computer Science, University of Manchester, Manchester, United Kingdom.

出版信息

J Med Internet Res. 2021 Oct 29;23(10):e26957. doi: 10.2196/26957.

Abstract

BACKGROUND

Hyperinsulinism (HI) due to excess and dysregulated insulin secretion is the most common cause of severe and recurrent hypoglycemia in childhood. High cerebral glucose use in the early hours results in a high risk of hypoglycemia in people with diabetes and carries a significant risk of brain injury. Prevention of hypoglycemia is the cornerstone of the management of HI, but the risk of hypoglycemia at night or the timing of hypoglycemia in children with HI has not been studied; thus, the digital phenotype remains incomplete and management suboptimal.

OBJECTIVE

This study aims to quantify the timing of hypoglycemia in patients with HI to describe glycemic variability and to extend the digital phenotype. This will facilitate future work using computational modeling to enable behavior change and reduce exposure of patients with HI to injurious hypoglycemic events.

METHODS

Patients underwent continuous glucose monitoring (CGM) with a Dexcom G4 or G6 CGM device as part of their clinical assessment for either HI (N=23) or idiopathic ketotic hypoglycemia (IKH; N=24). The CGM data were analyzed for temporal trends. Hypoglycemia was defined as glucose levels <3.5 mmol/L.

RESULTS

A total of 449 hypoglycemic events totaling 15,610 minutes were captured over 237 days from 47 patients (29 males; mean age 70 months, SD 53). The mean length of hypoglycemic events was 35 minutes. There was a clear tendency for hypoglycemia in the early hours (3-7 AM), particularly for patients with HI older than 10 months who experienced hypoglycemia 7.6% (1480/19,370 minutes) of time in this period compared with 2.6% (2405/92,840 minutes) of time outside this period (P<.001). This tendency was less pronounced in patients with HI who were younger than 10 months, patients with a negative genetic test result, and patients with IKH. Despite real-time CGM, there were 42 hypoglycemic events from 13 separate patients with HI lasting >30 minutes.

CONCLUSIONS

This is the first study to have taken the first step in extending the digital phenotype of HI by describing the glycemic trends and identifying the timing of hypoglycemia measured by CGM. We have identified the early hours as a time of high hypoglycemia risk for patients with HI and demonstrated that simple provision of CGM data to patients is not sufficient to eliminate hypoglycemia. Future work in HI should concentrate on the early hours as a period of high risk for hypoglycemia and must target personalized hypoglycemia predictions. Focus must move to the human-computer interaction as an aspect of the digital phenotype that is susceptible to change rather than simple mathematical modeling to produce small improvements in hypoglycemia prediction accuracy.

摘要

背景

胰岛素分泌过多和失调导致的高胰岛素血症是儿童重度和复发性低血糖的最常见原因。早期大脑葡萄糖的高利用导致糖尿病患者发生低血糖的风险很高,并且存在显著的脑损伤风险。预防低血糖是高胰岛素血症治疗的基石,但夜间低血糖的风险或高胰岛素血症患儿的低血糖发生时间尚未得到研究;因此,数字表型仍不完整,治疗效果也不理想。

目的

本研究旨在量化高胰岛素血症患者的低血糖发生时间,以描述血糖变异性并扩展数字表型。这将有助于未来使用计算模型进行工作,从而能够改变行为,降低高胰岛素血症患者遭受有害低血糖事件的风险。

方法

患者接受 Dexcom G4 或 G6 CGM 设备的连续血糖监测(CGM),作为其高胰岛素血症(N=23)或特发性酮症性低血糖症(IKH;N=24)临床评估的一部分。对 CGM 数据进行时间趋势分析。低血糖定义为血糖水平<3.5mmol/L。

结果

共 47 名患者(29 名男性;平均年龄 70 个月,SD 53)在 237 天内共记录了 449 次低血糖事件,总计 15610 分钟。低血糖事件的平均持续时间为 35 分钟。低血糖在凌晨(3-7 点)有明显的发生趋势,特别是 10 个月以上的高胰岛素血症患者,在这段时间内经历了 7.6%(1480/19370 分钟)的低血糖时间,而在这段时间之外,低血糖时间仅为 2.6%(2405/92840 分钟)(P<.001)。这种趋势在 10 个月以下的高胰岛素血症患者、基因检测结果阴性的患者和 IKH 患者中不那么明显。尽管实时 CGM,但仍有 13 名高胰岛素血症患者出现了 42 次持续时间超过 30 分钟的低血糖事件。

结论

这是第一项通过描述 CGM 测量的血糖趋势并确定低血糖发生时间,从而扩展高胰岛素血症数字表型的研究。我们已经确定凌晨是高胰岛素血症患者低血糖风险较高的时间,并且已经证明,仅仅向患者提供 CGM 数据不足以消除低血糖。高胰岛素血症的未来研究应集中在凌晨作为低血糖高风险期,并必须针对个性化低血糖预测。重点必须转移到人机交互作为数字表型的一个易于改变的方面,而不是简单的数学建模,以提高低血糖预测准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3271/8590184/93a97b90bf6b/jmir_v23i10e26957_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验