Suppr超能文献

低血糖误差网格:英国范围内关于 CGM 在高胰岛素血症中准确性评估的共识。

The hypoglycaemia error grid: A UK-wide consensus on CGM accuracy assessment in hyperinsulinism.

机构信息

Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, United Kingdom.

Department of Computer Science, University of Manchester, Manchester, United Kingdom.

出版信息

Front Endocrinol (Lausanne). 2022 Nov 2;13:1016072. doi: 10.3389/fendo.2022.1016072. eCollection 2022.

Abstract

OBJECTIVE

Continuous Glucose Monitoring (CGM) is gaining in popularity for patients with paediatric hypoglycaemia disorders such as Congenital Hyperinsulinism (CHI), but no standard measures of accuracy or associated clinical risk are available. The small number of prior assessments of CGM accuracy in CHI have thus been incomplete. We aimed to develop a novel Hypoglycaemia Error Grid (HEG) for CGM assessment for those with CHI based on expert consensus opinion applied to a large paired (CGM/blood glucose) dataset.

DESIGN AND METHODS

Paediatric endocrinology consultants regularly managing CHI in the two UK centres of excellence were asked to complete a questionnaire regarding glucose cutoffs and associated anticipated risks of CGM errors in a hypothetical model. Collated information was utilised to mathematically generate the HEG which was then approved by expert, consensus opinion. Ten patients with CHI underwent 12 weeks of monitoring with a Dexcom G6 CGM and self-monitored blood glucose (SMBG) with a Contour Next One glucometer to test application of the HEG and provide an assessment of accuracy for those with CHI.

RESULTS

CGM performance was suboptimal, based on 1441 paired values of CGM and SMBG showing Mean Absolute Relative Difference (MARD) of 19.3% and hypoglycaemia (glucose <3.5mmol/L (63mg/dL)) sensitivity of only 45%. The HEG provided clinical context to CGM errors with 15% classified as moderate risk by expert consensus when data was restricted to that of practical use. This provides a contrasting risk profile from existing diabetes error grids, reinforcing its utility in the clinical assessment of CGM accuracy in hypoglycaemia.

CONCLUSIONS

The Hypoglycaemia Error Grid, based on UK expert consensus opinion has demonstrated inadequate accuracy of CGM to recommend as a standalone tool for routine clinical use. However, suboptimal accuracy of CGM relative to SMBG does not detract from alternative uses of CGM in this patient group, such as use as a digital phenotyping tool. The HEG is freely available on GitHub for use by other researchers to assess accuracy in their patient populations and validate these findings.

摘要

目的

连续血糖监测(CGM)在小儿低血糖症疾病(如先天性高胰岛素血症(CHI))患者中越来越受欢迎,但目前尚无准确性或相关临床风险的标准衡量标准。因此,以前对 CGM 在 CHI 中的准确性评估数量较少且不完整。我们旨在根据专家共识意见,针对接受 CHI 治疗的患者,开发一种新的低血糖错误网格(HEG),用于评估 CGM 的准确性,该方法基于一个大型配对(CGM/血糖)数据集。

设计和方法

定期在英国两个卓越中心管理 CHI 的儿科内分泌学顾问被要求完成一份有关葡萄糖截止值和 CGM 误差相关预期风险的问卷,该问卷基于一个假设模型。汇总信息用于数学生成 HEG,然后由专家共识进行批准。10 名 CHI 患者接受了 12 周的 Dexcom G6 CGM 监测和 Contour Next One 血糖仪的自我监测血糖(SMBG)监测,以测试 HEG 的应用,并为 CHI 患者提供准确性评估。

结果

基于 1441 对 CGM 和 SMBG 的值,CGM 性能不理想,平均绝对相对差异(MARD)为 19.3%,低血糖(血糖<3.5mmol/L(63mg/dL))敏感性仅为 45%。HEG 为 CGM 错误提供了临床背景,当数据仅限于实际使用时,专家共识将 15%的 CGM 错误归类为中度风险。这与现有的糖尿病错误网格提供了对比鲜明的风险概况,在低血糖情况下,它在评估 CGM 准确性方面的实用性得到了加强。

结论

基于英国专家共识的低血糖错误网格显示,CGM 的准确性不足以推荐作为常规临床使用的独立工具。然而,CGM 相对于 SMBG 的准确性不佳并不影响其在该患者群体中的替代用途,例如用作数字表型工具。HEG 可在 GitHub 上免费获取,以供其他研究人员用于评估其患者人群中的准确性并验证这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5748/9666389/3964e145538d/fendo-13-1016072-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验