Bakoev Siroj, Kolosov Anatoly, Bakoev Faridun, Kostyunina Olga, Bakoev Nekruz, Romanets Timofey, Koshkina Olga, Getmantseva Lyubov
Don State Agrarian University, Persianovski 346493, Russia.
Centre for Strategic Planning and Management of Biomedical Health Risksdisabled, Moscow 119435, Russia.
Life (Basel). 2021 Aug 22;11(8):861. doi: 10.3390/life11080861.
Intensive selection raises the efficiency of pig farming considerably, but it also promotes the accumulation of homozygosity, which can lead to an increase in inbreeding and the accumulation of deleterious variation. The analysis of segments homozygous-by-descent (HBD) and non-HBD segments in purebred and crossbred pigs is of great interest. Research was carried out on 657 pigs, of which there were Large White (LW, = 280), Landrace (LR, = 218) and F1 female (♂LR × ♀LW) (F1, = 159). Genotyping was performed using the GeneSeek GGP Porcine HD Genomic Profiler v1 (Illumina Inc., USA). To identify HBD segments and estimate autozygosity (inbreeding coefficient), we used the multiple HBD classes model. LW pigs exhibited 50,420 HBD segments, an average of 180 per animal; LR pigs exhibited 33,586 HBD segments, an average of 154 per animal; F1 pigs exhibited 21,068 HBD segments, an average of 132 per animal. The longest HBD segments in LW were presented in SSC1, SSC13 and SSC15; in LR, in SSC1; and in F1, in SSC15. In these segments, 3898 SNPs localized in 1252 genes were identified. These areas overlap with 441 QTLs (SSC1-238 QTLs; SSC13-101 QTLs; and SSC15-102 QTLs), including 174 QTLs for meat and carcass traits (84 QTLs-fatness), 127 QTLs for reproduction traits (100 QTLs-litter traits), 101 for production traits (69 QTLs-growth and 30 QTLs-feed intake), 21 QTLs for exterior traits (9 QTLs-conformation) and 18 QTLs for health traits (13 QTLs-blood parameters). Thirty SNPs were missense variants. Whilst estimating the potential for deleterious variation, six SNPs localized in the NEDD4, SEC11C, DCP1A, CCT8, PKP4 and TENM3 genes were identified, which may show deleterious variation. A high frequency of potential deleterious variation was noted for LR in DCP1A, and for LW in TENM3 and PKP4. In all cases, the genotype frequencies in F1 were intermediate between LR and LW. The findings presented in our work show the promise of genome scanning for HBD as a strategy for studying population history, identifying genomic regions and genes associated with important economic traits, as well as deleterious variation.
高强度选择显著提高了养猪效率,但也促进了纯合性的积累,这可能导致近亲繁殖增加和有害变异的积累。对纯种猪和杂交猪中纯合子片段(HBD)和非HBD片段的分析具有重要意义。对657头猪进行了研究,其中有大白猪(LW,n = 280)、长白猪(LR,n = 218)和F1代母猪(♂LR×♀LW)(F1,n = 159)。使用GeneSeek GGP Porcine HD Genomic Profiler v1(美国Illumina公司)进行基因分型。为了识别HBD片段并估计纯合度(近亲繁殖系数),我们使用了多HBD类模型。LW猪表现出50420个HBD片段,每头猪平均180个;LR猪表现出33586个HBD片段,每头猪平均154个;F1猪表现出21068个HBD片段,每头猪平均132个。LW猪中最长的HBD片段出现在SSC1、SSC13和SSC15染色体上;LR猪中出现在SSC1染色体上;F1猪中出现在SSC15染色体上。在这些片段中,鉴定出了位于1252个基因中的3898个单核苷酸多态性(SNP)。这些区域与441个数量性状基因座(QTL)重叠(SSC1染色体上有238个QTL;SSC13染色体上有101个QTL;SSC15染色体上有102个QTL),包括174个与肉和胴体性状相关的QTL(84个与脂肪相关的QTL)、127个与繁殖性状相关的QTL(100个与窝产性状相关的QTL)、101个与生产性状相关的QTL(69个与生长相关的QTL和30个与采食量相关的QTL)、21个与外形性状相关的QTL(9个与体型相关的QTL)和18个与健康性状相关的QTL(13个与血液参数相关的QTL)。30个SNP是错义变异。在评估有害变异的可能性时,鉴定出了位于NEDD4、SEC11C、DCP1A、CCT8、PKP4和TENM3基因中的6个SNP,这些SNP可能表现出有害变异。在DCP1A基因中,LR猪的潜在有害变异频率较高;在TENM3和PKP4基因中,LW猪的潜在有害变异频率较高。在所有情况下,F1代的基因型频率介于LR和LW之间。我们研究中的发现表明,对HBD进行基因组扫描有望成为一种研究群体历史、识别与重要经济性状相关的基因组区域和基因以及有害变异的策略。