Suppr超能文献

噪声干扰下微弱趋势的最快检测方法研究

Research on the Fastest Detection Method for Weak Trends under Noise Interference.

作者信息

Li Guang, Liang Jing, Yue Caitong

机构信息

School of Electrical Engineering and Automation, Henan Institute of Technology, Xinxiang 453003, China.

School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Entropy (Basel). 2021 Aug 22;23(8):1093. doi: 10.3390/e23081093.

Abstract

Trend anomaly detection is the practice of comparing and analyzing current and historical data trends to detect real-time abnormalities in online industrial data-streams. It has the advantages of tracking a concept drift automatically and predicting trend changes in the shortest time, making it important both for algorithmic research and industry. However, industrial data streams contain considerable noise that interferes with detecting weak anomalies. In this paper, the fastest detection algorithm "sliding nesting" is adopted. It is based on calculating the data weight in each window by applying variable weights, while maintaining the method of trend-effective integration accumulation. The new algorithm changes the traditional calculation method of the trend anomaly detection score, which calculates the score in a short window. This algorithm, SNWFD-DS, can detect weak trend abnormalities in the presence of noise interference. Compared with other methods, it has significant advantages. An on-site oil drilling data test shows that this method can significantly reduce delays compared with other methods and can improve the detection accuracy of weak trend anomalies under noise interference.

摘要

趋势异常检测是一种通过比较和分析当前及历史数据趋势来检测在线工业数据流中实时异常的实践方法。它具有自动跟踪概念漂移并在最短时间内预测趋势变化的优点,这使其在算法研究和工业领域都很重要。然而,工业数据流包含大量噪声,会干扰对微弱异常的检测。本文采用了最快的检测算法“滑动嵌套”。它基于通过应用可变权重来计算每个窗口中的数据权重,同时保持趋势有效积分累积的方法。新算法改变了趋势异常检测分数的传统计算方法,传统方法是在短窗口中计算分数。这种算法,即SNWFD-DS,能够在存在噪声干扰的情况下检测微弱的趋势异常。与其他方法相比,它具有显著优势。一项现场石油钻井数据测试表明,与其他方法相比,该方法可显著减少延迟,并能提高在噪声干扰下微弱趋势异常的检测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08cc/8392765/1b78972cbf8e/entropy-23-01093-g001.jpg

相似文献

1
Research on the Fastest Detection Method for Weak Trends under Noise Interference.
Entropy (Basel). 2021 Aug 22;23(8):1093. doi: 10.3390/e23081093.
2
Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks.
Neural Netw. 2021 Jul;139:118-139. doi: 10.1016/j.neunet.2021.02.017. Epub 2021 Feb 25.
4
Learning From Short Text Streams With Topic Drifts.
IEEE Trans Cybern. 2018 Sep;48(9):2697-2711. doi: 10.1109/TCYB.2017.2748598. Epub 2017 Sep 18.
5
Online and Unsupervised Anomaly Detection for Streaming Data Using an Array of Sliding Windows and PDDs.
IEEE Trans Cybern. 2021 Apr;51(4):2284-2289. doi: 10.1109/TCYB.2019.2935066. Epub 2021 Mar 17.
6
Designing a Streaming Algorithm for Outlier Detection in Data Mining-An Incrementa Approach.
Sensors (Basel). 2020 Feb 26;20(5):1261. doi: 10.3390/s20051261.
7
A novel technique for detecting sudden concept drift in healthcare data using multi-linear artificial intelligence techniques.
Front Artif Intell. 2022 Aug 31;5:950659. doi: 10.3389/frai.2022.950659. eCollection 2022.
8
A survey on detecting healthcare concept drift in AI/ML models from a finance perspective.
Front Artif Intell. 2023 Apr 17;5:955314. doi: 10.3389/frai.2022.955314. eCollection 2022.
10
Detecting long-term growth trends using tree rings: a critical evaluation of methods.
Glob Chang Biol. 2015 May;21(5):2040-54. doi: 10.1111/gcb.12826. Epub 2015 Feb 6.

本文引用的文献

1
Real-time observations of the impact of COVID-19 on underwater noise.
J Acoust Soc Am. 2020 May;147(5):3390. doi: 10.1121/10.0001271.
2
Machine learning for real-time prediction of complications in critical care: a retrospective study.
Lancet Respir Med. 2018 Dec;6(12):905-914. doi: 10.1016/S2213-2600(18)30300-X. Epub 2018 Sep 28.
3
Cancer prevalence in France: time trend, situation in 2002 and extrapolation to 2012.
Eur J Cancer. 2008 Jan;44(1):115-22. doi: 10.1016/j.ejca.2007.10.022. Epub 2007 Nov 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验