Suppr超能文献

基于在线进化尖峰神经网络的流数据无监督异常检测。

Unsupervised Anomaly Detection in Stream Data with Online Evolving Spiking Neural Networks.

机构信息

Warsaw University of Technology, Institute of Computer Science, Nowowiejska 15/19, 00-665, Warsaw, Poland.

TECNALIA, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, E-700, 48160 Derio, Spain.

出版信息

Neural Netw. 2021 Jul;139:118-139. doi: 10.1016/j.neunet.2021.02.017. Epub 2021 Feb 25.

Abstract

Unsupervised anomaly discovery in stream data is a research topic with many practical applications. However, in many cases, it is not easy to collect enough training data with labeled anomalies for supervised learning of an anomaly detector in order to deploy it later for identification of real anomalies in streaming data. It is thus important to design anomalies detectors that can correctly detect anomalies without access to labeled training data. Our idea is to adapt the Online evolving Spiking Neural Network (OeSNN) classifier to the anomaly detection task. As a result, we offer an Online evolving Spiking Neural Network for Unsupervised Anomaly Detection algorithm (OeSNN-UAD), which, unlike OeSNN, works in an unsupervised way and does not separate output neurons into disjoint decision classes. OeSNN-UAD uses our proposed new two-step anomaly detection method. Also, we derive new theoretical properties of neuronal model and input layer encoding of OeSNN, which enable more effective and efficient detection of anomalies in our OeSNN-UAD approach. The proposed OeSNN-UAD detector was experimentally compared with state-of-the-art unsupervised and semi-supervised detectors of anomalies in stream data from the Numenta Anomaly Benchmark and Yahoo Anomaly Datasets repositories. Our approach outperforms the other solutions provided in the literature in the case of data streams from the Numenta Anomaly Benchmark repository. Also, in the case of real data files of the Yahoo Anomaly Benchmark repository, OeSNN-UAD outperforms other selected algorithms, whereas in the case of Yahoo Anomaly Benchmark synthetic data files, it provides competitive results to the results recently reported in the literature.

摘要

无监督流数据异常发现是一个具有许多实际应用的研究课题。然而,在许多情况下,为了以后对流数据中的真实异常进行识别,很难收集到足够的带有异常标签的训练数据来对异常检测器进行有监督学习。因此,设计能够在没有异常标签训练数据的情况下正确检测异常的异常检测器是很重要的。我们的想法是将在线进化尖峰神经网络 (OeSNN) 分类器应用于异常检测任务中。因此,我们提出了一种用于无监督异常检测的在线进化尖峰神经网络算法 (OeSNN-UAD),与 OeSNN 不同,它是一种无监督的工作方式,不会将输出神经元分成不相交的决策类。OeSNN-UAD 使用我们提出的新的两步异常检测方法。此外,我们推导出了 OeSNN 的神经元模型和输入层编码的新理论性质,这使得我们的 OeSNN-UAD 方法能够更有效地检测异常。所提出的 OeSNN-UAD 检测器与来自 Numenta 异常基准和雅虎异常数据集存储库的流数据中的最新无监督和半监督异常检测器进行了实验比较。在 Numenta 异常基准存储库的数据流的情况下,我们的方法优于文献中提供的其他解决方案。此外,在雅虎异常基准存储库的真实数据文件的情况下,OeSNN-UAD 优于其他选定的算法,而在雅虎异常基准存储库的合成数据文件的情况下,它与文献中最近报道的结果竞争激烈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验