Laboratory on AI for Computational Biology, Faculty of Computer Science, HSE University, 11 Pokrovsky Bvld., Moscow 109028, Russian Federation.
Faculty of Computer Science, HSE University, 11 Pokrovsky Bvld., Moscow 109028, Russian Federation.
J Proteome Res. 2021 Oct 1;20(10):4708-4717. doi: 10.1021/acs.jproteome.1c00315. Epub 2021 Aug 27.
Spectrum annotation is a challenging task due to the presence of unexpected peptide fragmentation ions as well as the inaccuracy of the detectors of the spectrometers. We present a deep convolutional neural network, called Slider, which learns an optimal feature extraction in its kernels for scoring mass spectrometry (MS)/MS spectra to increase the number of spectrum annotations with high confidence. Experimental results using publicly available data sets show that Slider can annotate slightly more spectra than the state-of-the-art methods (BoltzMatch, Res-EV, Prosit), albeit 2-10 times faster. More interestingly, Slider provides only 2-4% fewer spectrum annotations with low-resolution fragmentation information than other methods with high-resolution information. This means that Slider can exploit nearly as much information from the context of low-resolution spectrum peaks as the high-resolution fragmentation information can provide for other scoring methods. Thus, Slider can be an optimal choice for practitioners using old spectrometers with low-resolution detectors.
谱图注释是一项具有挑战性的任务,这是由于存在意料之外的肽段碎裂离子以及质谱仪检测器的不准确性所致。我们提出了一种深度卷积神经网络,称为 Slider,它在其核中学习用于评分质谱 (MS)/MS 谱图的最佳特征提取,以增加具有高置信度的谱图注释数量。使用公开可用数据集进行的实验结果表明,Slider 可以注释比最先进的方法(BoltzMatch、Res-EV、Prosit)稍多的谱图,尽管速度快 2-10 倍。更有趣的是,Slider 提供的低分辨率碎裂信息的谱图注释比其他具有高分辨率信息的方法少 2-4%。这意味着 Slider 可以从低分辨率谱峰的上下文利用几乎与高分辨率碎裂信息一样多的信息,而其他评分方法则可以提供这些信息。因此,Slider 可以成为使用具有低分辨率检测器的旧质谱仪的从业者的最佳选择。