Department of Nuclear Medicine, Chaohu Hospital of Anhui Medical University, Heifei, 238000, China.
Department of Nuclear Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510289, China.
Diagn Pathol. 2023 Aug 19;18(1):95. doi: 10.1186/s13000-023-01380-2.
To explore the distinguishing diagnostic value and clinical application potential of deep neural networks (DNN) for pathological images of thyroid tumors.
A total of 799 pathological thyroid images of 559 patients with thyroid tumors were retrospectively analyzed. The pathological types included papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), follicular thyroid carcinoma (FTC), adenomatous goiter, adenoma, and normal thyroid gland. The dataset was divided into a training set and a test set. Resnet50, Resnext50, EfficientNet, and Densenet121 were trained using the training set data and tested with the test set data to determine the diagnostic efficiency of different pathology types and to further analyze the causes of misdiagnosis.
The recall, precision, negative predictive value (NPV), accuracy, specificity, and F1 scores of the four models ranged from 33.33% to 100.00%. The area under curve (AUC) ranged from 0.822 to 0.994, and the Kappa coefficient ranged from 0.7508 to 0.7713. However, the performance of diagnosing FTC, adenoma, and adenomatous goiter was slightly inferior to other types of pathological tissues.
The DNN model achieved satisfactory results in the task of classifying thyroid tumors by learning thyroid pathology images. These results indicate the potential of the DNN model for the efficient diagnosis of thyroid tumor histopathology.
探索深度神经网络(DNN)在甲状腺肿瘤病理图像诊断中的鉴别诊断价值及临床应用潜力。
回顾性分析 559 例甲状腺肿瘤患者的 799 张甲状腺病理图像。病理类型包括甲状腺乳头状癌(PTC)、甲状腺髓样癌(MTC)、滤泡状甲状腺癌(FTC)、腺瘤、结节性甲状腺肿、正常甲状腺。数据集分为训练集和测试集。使用训练集数据对 Resnet50、Resnext50、EfficientNet 和 Densenet121 进行训练,并使用测试集数据进行测试,以确定不同病理类型的诊断效率,并进一步分析误诊的原因。
四种模型的召回率、准确率、阴性预测值(NPV)、准确性、特异性和 F1 评分范围为 33.33%至 100.00%。曲线下面积(AUC)范围为 0.822 至 0.994,kappa 系数范围为 0.7508 至 0.7713。然而,诊断 FTC、腺瘤和结节性甲状腺肿的性能略逊于其他类型的病理组织。
DNN 模型通过学习甲状腺病理图像在甲状腺肿瘤分类任务中取得了满意的结果。这些结果表明 DNN 模型在甲状腺肿瘤组织病理学的高效诊断中具有潜力。