Suppr超能文献

预测脑卒中后步态的肌电生物标志物。

Prediction of Myoelectric Biomarkers in Post-Stroke Gait.

机构信息

Center for Medical Convergence Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea.

Department of KSB (Knowledge-Converged Super Brain) Convergence Research, Electronics and Telecommunication Research Institute, Daejeon 34129, Korea.

出版信息

Sensors (Basel). 2021 Aug 7;21(16):5334. doi: 10.3390/s21165334.

Abstract

Electromyography (EMG) is sensitive to neuromuscular changes resulting from ischemic stroke and is considered a potential predictive tool of post-stroke gait and rehabilitation management. This study aimed to evaluate the potential myoelectric biomarkers for the classification of stroke-impaired muscular activity of the stroke patient group and the muscular activity of the control healthy adult group. We also proposed an EMG-based gait monitoring system consisting of a portable EMG device, cloud-based data processing, data analytics, and a health advisor service. This system was investigated with 48 stroke patients (mean age 70.6 years, 65% male) admitted into the emergency unit of a hospital and 75 healthy elderly volunteers (mean age 76.3 years, 32% male). EMG was recorded during walking using the portable device at two muscle positions: the bicep femoris muscle and the lateral gastrocnemius muscle of both lower limbs. The statistical result showed that the mean power frequency (MNF), median power frequency (MDF), peak power frequency (PKF), and mean power (MNP) of the stroke group differed significantly from those of the healthy control group. In the machine learning analysis, the neural network model showed the highest classification performance (precision: 88%, specificity: 89%, accuracy: 80%) using the training dataset and highest classification performance (precision: 72%, specificity: 74%, accuracy: 65%) using the testing dataset. This study will be helpful to understand stroke-impaired gait changes and decide post-stroke rehabilitation.

摘要

肌电图(EMG)对缺血性中风引起的神经肌肉变化敏感,被认为是预测中风后步态和康复管理的潜在工具。本研究旨在评估潜在的肌电生物标志物,用于分类中风患者组和健康对照组的肌肉活动。我们还提出了一种基于肌电图的步态监测系统,该系统由便携式肌电图设备、基于云的数据处理、数据分析和健康顾问服务组成。该系统在一家医院的急诊室对 48 名中风患者(平均年龄 70.6 岁,65%为男性)和 75 名健康老年志愿者(平均年龄 76.3 岁,32%为男性)进行了调查。使用便携式设备在两个肌肉位置(双侧下肢的股二头肌和外侧腓肠肌)记录行走时的肌电图。统计结果显示,中风组的平均功率频率(MNF)、中位功率频率(MDF)、峰值功率频率(PKF)和平均功率(MNP)与健康对照组有显著差异。在机器学习分析中,神经网络模型在使用训练数据集时表现出最高的分类性能(准确率:88%,特异性:89%,准确性:80%),在使用测试数据集时表现出最高的分类性能(准确率:72%,特异性:74%,准确性:65%)。本研究将有助于了解中风引起的步态变化,并决定中风后的康复治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4e8/8399186/0cf6acfed5a5/sensors-21-05334-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验