Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany.
State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China.
Sci Adv. 2023 Mar 22;9(12):eadf9462. doi: 10.1126/sciadv.adf9462.
Biological cilia play essential roles in self-propulsion, food capture, and cell transportation by performing coordinated metachronal motions. Experimental studies to emulate the biological cilia metachronal coordination are challenging at the micrometer length scale because of current limitations in fabrication methods and materials. We report on the creation of wirelessly actuated magnetic artificial cilia with biocompatibility and metachronal programmability at the micrometer length scale. Each cilium is fabricated by direct laser printing a silk fibroin hydrogel beam affixed to a hard magnetic FePt Janus microparticle. The 3D-printed cilia show stable actuation performance, high temperature resistance, and high mechanical endurance. Programmable metachronal coordination can be achieved by programming the orientation of the identically magnetized FePt Janus microparticles, which enables the generation of versatile microfluidic patterns. Our platform offers an unprecedented solution to create bioinspired microcilia for programmable microfluidic systems, biomedical engineering, and biocompatible implants.
生物纤毛在自我推进、食物捕获和细胞运输中发挥着重要作用,通过协调的行波运动来完成。由于当前制造方法和材料的限制,在微米长度尺度上模拟生物纤毛行波协调的实验研究具有挑战性。我们报告了在微米长度尺度上创建具有生物相容性和行波可编程性的无线驱动磁性人工纤毛。每个纤毛都是通过直接激光打印固定在硬磁 FePt 双曲微球上的丝素水凝胶梁来制造的。3D 打印的纤毛具有稳定的驱动性能、耐高温性和高机械耐久性。通过编程相同磁化的 FePt 双曲微球的方向,可以实现可编程的行波协调,从而产生多种微流图案。我们的平台为创建用于可编程微流系统、生物医学工程和生物相容植入物的仿生微纤毛提供了前所未有的解决方案。