Mathematics for Real-World Systems Centre for Doctoral Training, The University of Warwick, Coventry, CV4 7AL, UK.
Department of Psychology, The University of Warwick, Coventry, CV4 7AL, UK.
Sci Rep. 2021 Aug 27;11(1):17309. doi: 10.1038/s41598-021-96214-w.
The prevailing maximum likelihood estimators for inferring power law models from rank-frequency data are biased. The source of this bias is an inappropriate likelihood function. The correct likelihood function is derived and shown to be computationally intractable. A more computationally efficient method of approximate Bayesian computation (ABC) is explored. This method is shown to have less bias for data generated from idealised rank-frequency Zipfian distributions. However, the existing estimators and the ABC estimator described here assume that words are drawn from a simple probability distribution, while language is a much more complex process. We show that this false assumption leads to continued biases when applying any of these methods to natural language to estimate Zipf exponents. We recommend that researchers be aware of the bias when investigating power laws in rank-frequency data.
从等级频率数据推断幂律模型的主流极大似然估计器存在偏差。这种偏差的来源是不合适的似然函数。本文推导出了正确的似然函数,并表明其计算上难以处理。探索了一种更具计算效率的近似贝叶斯计算 (ABC) 方法。该方法在对理想等级频率齐夫分布生成的数据进行分析时,显示出较少的偏差。然而,现有的估计器和本文中描述的 ABC 估计器假设单词是从简单的概率分布中抽取的,而语言是一个更为复杂的过程。我们表明,当将这些方法中的任何一种应用于自然语言以估计齐夫指数时,这种错误的假设会导致持续的偏差。我们建议研究人员在研究等级频率数据中的幂律时要注意这种偏差。