Hanel Rudolf, Corominas-Murtra Bernat, Liu Bo, Thurner Stefan
Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, United States of America.
PLoS One. 2017 Feb 28;12(2):e0170920. doi: 10.1371/journal.pone.0170920. eCollection 2017.
Most standard methods based on maximum likelihood (ML) estimates of power-law exponents can only be reliably used to identify exponents smaller than minus one. The argument that power laws are otherwise not normalizable, depends on the underlying sample space the data is drawn from, and is true only for sample spaces that are unbounded from above. Power-laws obtained from bounded sample spaces (as is the case for practically all data related problems) are always free of such limitations and maximum likelihood estimates can be obtained for arbitrary powers without restrictions. Here we first derive the appropriate ML estimator for arbitrary exponents of power-law distributions on bounded discrete sample spaces. We then show that an almost identical estimator also works perfectly for continuous data. We implemented this ML estimator and discuss its performance with previous attempts. We present a general recipe of how to use these estimators and present the associated computer codes.
大多数基于幂律指数最大似然(ML)估计的标准方法仅能可靠地用于识别小于负一的指数。幂律在其他情况下不可归一化的观点,取决于数据所来自的基础样本空间,并且仅对于无上限的样本空间才成立。从有界样本空间获得的幂律(几乎所有与数据相关的实际问题都是这种情况)总是没有此类限制,并且可以不受限制地针对任意幂次获得最大似然估计。在这里,我们首先推导有界离散样本空间上幂律分布任意指数的适当ML估计器。然后我们表明,一个几乎相同的估计器对于连续数据也能完美适用。我们实现了这个ML估计器,并与之前的尝试讨论了其性能。我们给出了如何使用这些估计器的一般方法,并展示了相关的计算机代码。