Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, 4056, Basel, Switzerland.
Agroisolab GmbH, Professor-Rehm-Strasse 6, 52428, Jülich, Germany.
Sci Rep. 2021 Aug 27;11(1):17314. doi: 10.1038/s41598-021-96722-9.
Fraudulent food products, especially regarding false claims of geographic origin, impose economic damages of $30-$40 billion per year. Stable isotope methods, using oxygen isotopes (δO) in particular, are the leading forensic tools for identifying these crimes. Plant physiological stable oxygen isotope models simulate how precipitation δO values and climatic variables shape the δO values of water and organic compounds in plants. These models have the potential to simplify, speed up, and improve conventional stable isotope applications and produce temporally resolved, accurate, and precise region-of-origin assignments for agricultural food products. However, the validation of these models and thus the best choice of model parameters and input variables have limited the application of the models for the origin identification of food. In our study we test model predictions against a unique 11-year European strawberry δO reference dataset to evaluate how choices of input variable sources and model parameterization impact the prediction skill of the model. Our results show that modifying leaf-based model parameters specifically for fruit and with product-independent, but growth time specific environmental input data, plant physiological isotope models offer a new and dynamic method that can accurately predict the geographic origin of a plant product and can advance the field of stable isotope analysis to counter food fraud.
欺诈性食品,特别是关于虚假产地声称的食品,每年造成的经济损失达 300 亿至 400 亿美元。稳定同位素方法,特别是利用氧同位素(δO),是识别这些犯罪的主要法医工具。植物生理稳定同位素模型模拟降水 δO 值和气候变量如何塑造植物中水分和有机化合物的 δO 值。这些模型有可能简化、加速和改进传统的稳定同位素应用,并为农产品提供时间分辨、准确和精确的产地分配。然而,这些模型的验证以及模型参数和输入变量的最佳选择限制了模型在食品产地鉴定中的应用。在我们的研究中,我们根据一个独特的欧洲草莓 11 年 δO 参考数据集来检验模型预测,以评估输入变量来源和模型参数化的选择如何影响模型的预测能力。我们的结果表明,专门针对水果修改基于叶片的模型参数,并使用与产品无关但与生长时间有关的环境输入数据,植物生理同位素模型提供了一种新的动态方法,可以准确预测植物产品的地理来源,并将稳定同位素分析领域推进到打击食品欺诈的前沿。