Secció de Fisiologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona and AGROTECNIO (Centre for Research in Agrotechnology), Lleida, Spain 08028.
Unitat de Medi Ambient, Scientific and Technological Centers of the University of Barcelona, Barcelona, Spain 08028.
Plant Physiol. 2019 Jun;180(2):793-812. doi: 10.1104/pp.19.00238. Epub 2019 Apr 5.
The stable carbon (δC) and oxygen (δO) isotope compositions in plant matter reflect photosynthetic and transpirative conditions in plants, respectively. However, the nature of hydrogen isotope composition (δH) and what it reflects of plant performance is poorly understood. Using durum wheat ( var ), this study evaluated the effect of different water and nitrogen growing field conditions on transpiration and how this effect influenced the performance of δH in autotrophic (flag leaf), mixotrophic (ears), and heterotrophic (grains and roots) organs. Moreover, δH was compared with the δC and δO in the same organs. Isotope compositions were analyzed in dry matter, the water-soluble fraction, and in water from different tissues of a set of genotypes. Similar to δC, the δH correlated negatively with stomatal conductance, whereas no correlation was observed for δO. Moreover, δH was not only affected by changes in transpiration but also by photosynthetic reactions, probably as a consequence of NADPH formation in autotrophic organs. Compared with the δH of stem water, plant δH was strongly diminished in photosynthetic organs such as the flag leaves, whereas it strongly increased in heterotrophic organs such as grains and roots. In heterotrophic organs, δH was associated with postphotosynthetic effects because there are several processes that lead to H-enrichment of carbohydrates. In summary, δH exhibited specific features that inform about the water conditions of the wheat crop, together with the photosynthetic characteristics of the plant part considered. Moreover, correlations of δH with grain yield illustrate that this isotope can be used to assess plant performance under different growing conditions.
植物物质中的稳定碳(δC)和氧(δO)同位素组成分别反映了植物的光合作用和蒸腾作用条件。然而,氢同位素组成(δH)的性质及其反映植物性能的方式还了解甚少。本研究使用硬质小麦( var. ),评估了不同的水和氮田间生长条件对蒸腾作用的影响,以及这种影响如何影响自养(旗叶)、混合营养(穗)和异养(籽粒和根)器官中 δH 的性能。此外,还将 δH 与同一器官中的 δC 和 δO 进行了比较。对一组基因型的干物质、水溶性部分以及不同组织的水中的同位素组成进行了分析。与 δC 相似,δH 与气孔导度呈负相关,而 δO 则没有相关性。此外,δH 不仅受到蒸腾作用变化的影响,还受到光合作用反应的影响,这可能是自养器官中 NADPH 形成的结果。与茎水的 δH 相比,旗叶等光合作用器官中的植物 δH 大大降低,而籽粒和根等异养器官中的 δH 大大增加。在异养器官中,δH 与光合作用后的效应有关,因为有几个过程会导致碳水化合物的 H 富集。总之,δH 表现出特定的特征,可以反映小麦作物的水分条件,以及所考虑植物部分的光合作用特征。此外,δH 与籽粒产量的相关性表明,该同位素可用于评估不同生长条件下的植物性能。