Wang Wei, Liu Qinglian, Liu Qun, Hendrickson Wayne A
Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.
Mol Cell. 2021 Oct 7;81(19):3919-3933.e7. doi: 10.1016/j.molcel.2021.07.039. Epub 2021 Aug 27.
Heat-shock proteins of 70 kDa (Hsp70s) are vital for all life and are notably important in protein folding. Hsp70s use ATP binding and hydrolysis at a nucleotide-binding domain (NBD) to control the binding and release of client polypeptides at a substrate-binding domain (SBD); however, the mechanistic basis for this allostery has been elusive. Here, we first characterize biochemical properties of selected domain-interface mutants in bacterial Hsp70 DnaK. We then develop a theoretical model for allosteric equilibria among Hsp70 conformational states to explain the observations: a restraining state, Hsp70-ATP, restricts ATP hydrolysis and binds peptides poorly, whereas a stimulating state, Hsp70-ATP, hydrolyzes ATP rapidly and has high intrinsic substrate affinity but rapid binding kinetics. We support this model for allosteric regulation with DnaK structures obtained in the postulated stimulating state S with biochemical tests of the S-state interface and with improved peptide-binding-site definition in an R-state structure.
70千道尔顿的热休克蛋白(Hsp70s)对所有生命都至关重要,在蛋白质折叠过程中尤为重要。Hsp70s利用核苷酸结合结构域(NBD)处的ATP结合和水解来控制底物结合结构域(SBD)处客户多肽的结合和释放;然而,这种变构的机制基础一直难以捉摸。在这里,我们首先表征了细菌Hsp70 DnaK中选定的结构域界面突变体的生化特性。然后,我们开发了一个Hsp70构象状态之间变构平衡的理论模型来解释这些观察结果:一种抑制状态,即Hsp70-ATP,限制ATP水解且对肽的结合能力较差,而一种刺激状态,即Hsp70-ADP,能快速水解ATP,具有高内在底物亲和力但结合动力学较快。我们通过在假定的刺激状态S下获得的DnaK结构、S态界面的生化测试以及R态结构中改进的肽结合位点定义,来支持这种变构调节模型。