Suppr超能文献

城市热点地区行人接触黑碳和 PM 排放:使用移动测量技术和灵活贝叶斯回归模型的新发现。

Pedestrian exposure to black carbon and PM emissions in urban hot spots: new findings using mobile measurement techniques and flexible Bayesian regression models.

机构信息

Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany.

Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

J Expo Sci Environ Epidemiol. 2022 Jul;32(4):604-614. doi: 10.1038/s41370-021-00379-5. Epub 2021 Aug 28.

Abstract

BACKGROUND

Data from extensive mobile measurements (MM) of air pollutants provide spatially resolved information on pedestrians' exposure to particulate matter (black carbon (BC) and PM mass concentrations).

OBJECTIVE

We present a distributional regression model in a Bayesian framework that estimates the effects of spatiotemporal factors on the pollutant concentrations influencing pedestrian exposure.

METHODS

We modeled the mean and variance of the pollutant concentrations obtained from MM in two cities and extended commonly used lognormal models with a lognormal-normal convolution (logNNC) extension for BC to account for instrument measurement error.

RESULTS

The logNNC extension significantly improved the BC model. From these model results, we found local sources and, hence, local mitigation efforts to improve air quality, have more impact on the ambient levels of BC mass concentrations than on the regulated PM.

SIGNIFICANCE

Firstly, this model (logNNC in bamlss package available in R) could be used for the statistical analysis of MM data from various study areas and pollutants with the potential for predicting pollutant concentrations in urban areas. Secondly, with respect to pedestrian exposure, it is crucial for BC mass concentration to be monitored and regulated in areas dominated by traffic-related air pollution.

摘要

背景

来自广泛的移动测量 (MM) 的空气污染数据提供了有关行人暴露于颗粒物 (黑碳 (BC) 和 PM 质量浓度) 的空间分辨率信息。

目的

我们提出了一种贝叶斯框架下的分布回归模型,用于估计时空因素对影响行人暴露的污染物浓度的影响。

方法

我们对两个城市的 MM 获得的污染物浓度的均值和方差进行建模,并扩展了常用的对数正态模型,对数正态 - 正态卷积 (logNNC) 扩展用于 BC 以考虑仪器测量误差。

结果

logNNC 扩展显着改善了 BC 模型。从这些模型结果中,我们发现了局部来源,因此,改善空气质量的局部缓解措施对 BC 质量浓度的环境水平的影响比对受监管的 PM 的影响更大。

意义

首先,该模型(R 中的 bamlss 包中的 logNNC)可用于各种研究区域和污染物的 MM 数据的统计分析,并具有预测城市地区污染物浓度的潜力。其次,就行人暴露而言,在交通相关空气污染占主导地位的地区,监测和调节 BC 质量浓度至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfa3/9349038/54e22f9bc79f/41370_2021_379_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验