文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

载 R848 和 MnCl 的壳聚糖-聚丙烯酸纳米粒子通过调节巨噬细胞极化和树突状细胞成熟抑制黑色素瘤。

Chitosan-Poly(Acrylic Acid) Nanoparticles Loaded with R848 and MnCl Inhibit Melanoma via Regulating Macrophage Polarization and Dendritic Cell Maturation.

机构信息

The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, People's Republic of China.

Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, People's Republic of China.

出版信息

Int J Nanomedicine. 2021 Aug 21;16:5675-5692. doi: 10.2147/IJN.S318363. eCollection 2021.


DOI:10.2147/IJN.S318363
PMID:34456564
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8387326/
Abstract

PURPOSE: Since immune cells in the tumor microenvironment (TME) can affect the development and progression of tumors, strategies modulating immune cells are considered to have an important therapeutic effect. As a TLR7/8 agonist, R848 effectively activates the innate immune cells to exert an anti-tumor effect. Mn has been reported to strongly promote the maturation of antigen-presenting cells (APCs), thereby enhancing the cytotoxicity of CD8 T cells. Thus, we tried to investigate whether chitosan-poly(acrylic acid) nanoparticles (CS-PAA NPs) loaded with R848 and MnCl (R-M@CS-PAA NPs) could exert an anti-tumor effect by regulating the function of immune cells. METHODS: R-M@CS-PAA NPs were prepared, and their basic characteristics, anti-tumor effect, and potential mechanisms were explored both in vitro and in vivo. RESULTS: R-M@CS-PAA NPs easily released MnCl and R848 at low pH. In B16F10 mouse melanoma model, R-M@CS-PAA NPs exerted the most significant anti-melanoma effect compared with the control group and CS-PAA NPs loaded with R848 or MnCl alone. FITC-labeled R-M@CS-PAA NPs were displayed to be accumulated at the tumor site. R-M@CS-PAA NPs significantly increased the infiltration of M1 macrophages and CD8 T cells but reduced the number of suppressive immune cells in the TME. Moreover, in vitro experiments showed that R-M@CS-PAA NPs polarized macrophages into the M1 phenotype to inhibit the proliferation of B16F10 cells. R-M@CS-PAA NPs also enhanced the killing function of CD8 T cells to B16F10 cells. Of note, R-M@CS-PAA NPs not only promoted the maturation of APCs such as dendritic cells and macrophages by STING and NF-кB pathways, but also enhanced the ability of dendritic cells to present ovalbumin to OT-I CD8 T cells to enhance the cytotoxicity of OT-I CD8 T cells to ovalbumin-expressing B16F10 cells. CONCLUSION: These data indicate that the administration of R-M@CS-PAA NPs is an effective therapeutic strategy against melanoma.

摘要

目的:由于肿瘤微环境(TME)中的免疫细胞可以影响肿瘤的发展和进展,因此调节免疫细胞的策略被认为具有重要的治疗效果。作为 TLR7/8 激动剂,R848 能有效激活固有免疫细胞发挥抗肿瘤作用。Mn 已被报道能强烈促进抗原呈递细胞(APC)的成熟,从而增强 CD8 T 细胞的细胞毒性。因此,我们试图研究壳聚糖-聚丙烯酸纳米粒子(CS-PAA NPs)负载 R848 和 MnCl(R-M@CS-PAA NPs)是否可以通过调节免疫细胞的功能发挥抗肿瘤作用。

方法:制备 R-M@CS-PAA NPs,并在体外和体内研究其基本特征、抗肿瘤作用及潜在机制。

结果:R-M@CS-PAA NPs 在低 pH 下容易释放 MnCl 和 R848。在 B16F10 小鼠黑色素瘤模型中,与对照组和单独负载 R848 或 MnCl 的 CS-PAA NPs 相比,R-M@CS-PAA NPs 发挥了最显著的抗黑色素瘤作用。FITC 标记的 R-M@CS-PAA NPs 显示在肿瘤部位聚集。R-M@CS-PAA NPs 显著增加了 M1 巨噬细胞和 CD8 T 细胞的浸润,但减少了 TME 中抑制性免疫细胞的数量。此外,体外实验表明,R-M@CS-PAA NPs 将巨噬细胞极化为 M1 表型,抑制 B16F10 细胞的增殖。R-M@CS-PAA NPs 还增强了 CD8 T 细胞对 B16F10 细胞的杀伤功能。值得注意的是,R-M@CS-PAA NPs 不仅通过 STING 和 NF-κB 途径促进树突状细胞和巨噬细胞等 APC 的成熟,还增强了树突状细胞将卵清蛋白呈递给 OT-I CD8 T 细胞的能力,从而增强了 OT-I CD8 T 细胞对表达卵清蛋白的 B16F10 细胞的细胞毒性。

结论:这些数据表明,R-M@CS-PAA NPs 的给药是一种有效的治疗黑色素瘤的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/d46e352e6b7e/IJN-16-5675-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/59ff7d68b5c2/IJN-16-5675-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/93443eabe7b6/IJN-16-5675-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/d0f628617ed4/IJN-16-5675-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/6fa9dad8abb7/IJN-16-5675-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/66689d2062d4/IJN-16-5675-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/4447696d36d4/IJN-16-5675-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/7fe6201f494f/IJN-16-5675-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/fed18528aa65/IJN-16-5675-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/54f7b2fd4f6e/IJN-16-5675-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/d46e352e6b7e/IJN-16-5675-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/59ff7d68b5c2/IJN-16-5675-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/93443eabe7b6/IJN-16-5675-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/d0f628617ed4/IJN-16-5675-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/6fa9dad8abb7/IJN-16-5675-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/66689d2062d4/IJN-16-5675-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/4447696d36d4/IJN-16-5675-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/7fe6201f494f/IJN-16-5675-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/fed18528aa65/IJN-16-5675-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/54f7b2fd4f6e/IJN-16-5675-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5145/8387326/d46e352e6b7e/IJN-16-5675-g0010.jpg

相似文献

[1]
Chitosan-Poly(Acrylic Acid) Nanoparticles Loaded with R848 and MnCl Inhibit Melanoma via Regulating Macrophage Polarization and Dendritic Cell Maturation.

Int J Nanomedicine. 2021

[2]
Pro-inflammatory chitosan/poly(γ-glutamic acid) nanoparticles modulate human antigen-presenting cells phenotype and revert their pro-invasive capacity.

Acta Biomater. 2017-9-14

[3]
T-cell engaging poly(lactic-co-glycolic acid) nanoparticles as a modular platform to induce a potent cytotoxic immunogenic response against PD-L1 overexpressing cancer.

Biomaterials. 2022-12

[4]
CS/PAA@TPGS/PLGA nanoparticles with intracellular pH-sensitive sequential release for delivering drug to the nucleus of MDR cells.

Colloids Surf B Biointerfaces. 2016-9-1

[5]
Peptide-guided resiquimod-loaded lignin nanoparticles convert tumor-associated macrophages from M2 to M1 phenotype for enhanced chemotherapy.

Acta Biomater. 2021-10-1

[6]
Folate-modified Chitosan Nanoparticles Containing the IP-10 Gene Enhance Melanoma-specific Cytotoxic CD8(+)CD28(+) T Lymphocyte Responses.

Theranostics. 2016-3-21

[7]
Anti-tumor macrophages activated by ferumoxytol combined or surface-functionalized with the TLR3 agonist poly (I : C) promote melanoma regression.

Theranostics. 2018-11-29

[8]
MnO-melittin nanoparticles serve as an effective anti-tumor immunotherapy by enhancing systemic immune response.

Biomaterials. 2022-9

[9]
Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages.

Nanoscale. 2019-10-17

[10]
Redox-responsive and pH-sensitive nanoparticles enhanced stability and anticancer ability of erlotinib to treat lung cancer in vivo.

Drug Des Devel Ther. 2017-12-8

引用本文的文献

[1]
Thermosensitive Resiquimod-Loaded Lipid Nanoparticles Promote the Polarization of Tumor-Associated Macrophages to Enhance Bladder Cancer Immunotherapy.

ACS Nano. 2025-6-3

[2]
cGAS/STING in skin melanoma: from molecular mechanisms to therapeutics.

Cell Commun Signal. 2024-11-18

[3]
Polymeric nanocarrier via metabolism regulation mediates immunogenic cell death with spatiotemporal orchestration for cancer immunotherapy.

Nat Commun. 2024-10-4

[4]
Manganese and IL-12 treatment alters the ovarian tumor microenvironment.

Aging (Albany NY). 2024-1-3

[5]
Nanoparticle-Based Treatment Approaches for Skin Cancer: A Systematic Review.

Curr Oncol. 2023-7-25

[6]
Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review.

Curr Med Chem. 2024

[7]
Recent progress on the activation of the cGAS-STING pathway and its regulation by biomolecular condensation.

J Mol Cell Biol. 2022-11-29

本文引用的文献

[1]
Gut Organoid as a New Platform to Study Alginate and Chitosan Mediated PLGA Nanoparticles for Drug Delivery.

Mar Drugs. 2021-5-20

[2]
Dysregulated APP expression and α-secretase processing of APP is involved in manganese-induced cognitive impairment.

Ecotoxicol Environ Saf. 2021-9-1

[3]
Manganese salts function as potent adjuvants.

Cell Mol Immunol. 2021-5

[4]
Presence of tumor-infiltrating CD8 T cells and macrophages correlates to longer overall survival in patients undergoing isolated hepatic perfusion for uveal melanoma liver metastasis.

Oncoimmunology. 2020-12-10

[5]
Development of thermosensitive resiquimod-loaded liposomes for enhanced cancer immunotherapy.

J Control Release. 2021-2-10

[6]
Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice.

Biomaterials. 2021-1

[7]
Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy.

Cell Res. 2020-11

[8]
Biodegradable pH-responsive amorphous calcium carbonate nanoparticles as immunoadjuvants for multimodal imaging and enhanced photoimmunotherapy.

J Mater Chem B. 2020-9-23

[9]
Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo.

Int J Biol Macromol. 2020-1-24

[10]
Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy.

Cancer Lett. 2019-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索