Suppr超能文献

基于生物信息学分析的食管鳞状细胞癌中与紫杉醇耐药相关的关键基因和通路的鉴定

Identification of Key Genes and Pathways Associated With Paclitaxel Resistance in Esophageal Squamous Cell Carcinoma Based on Bioinformatics Analysis.

作者信息

Shen Zhimin, Chen Mingduan, Luo Fei, Xu Hui, Zhang Peipei, Lin Jihong, Kang Mingqiang

机构信息

Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.

Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.

出版信息

Front Genet. 2021 Aug 11;12:671639. doi: 10.3389/fgene.2021.671639. eCollection 2021.

Abstract

Esophageal squamous cell carcinoma (ESCC) ranks as the fourth leading cause of cancer-related death in China. Although paclitaxel has been shown to be effective in treating ESCC, the prolonged use of this chemical will lead to paclitaxel resistance. In order to uncover genes and pathways driving paclitaxel resistance in the progression of ESCC, bioinformatics analyses were performed based on The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database including GSE86099 and GSE161533. Differential expression analysis was performed in TCGA data and two GEO datasets to obtain differentially expressed genes (DEGs). Based on GSE161533, weighted gene co-expression network analysis (WGCNA) was conducted to identify the key modules associated with ESCC tumor status. The DEGs common to the two GEO datasets and the genes in the key modules were intersected to obtain the paclitaxel resistance-specific or non-paclitaxel resistance-specific genes, which were subjected to subsequent least absolute shrinkage and selection operator (LASSO) feature selection, whereby paclitaxel resistance-specific or non-paclitaxel resistance-specific key genes were selected. Ten machine learning models were used to validate the biological significance of these key genes; the potential therapeutic drugs for paclitaxel resistance-specific genes were also predicted. As a result, we identified 24 paclitaxel resistance-specific genes and 18 non-paclitaxel resistance-specific genes. The ESCC machine classifiers based on the key genes achieved a relatively high AUC value in the cross-validation and in an independent test set, GSE164158. A total of 207 drugs (such as bevacizumab) were predicted to be alternative therapeutics for ESCC patients with paclitaxel resistance. These results might shed light on the in-depth research of paclitaxel resistance in the context of ESCC progression.

摘要

食管鳞状细胞癌(ESCC)是中国癌症相关死亡的第四大主要原因。尽管紫杉醇已被证明对治疗ESCC有效,但长期使用这种化学药物会导致紫杉醇耐药。为了揭示在ESCC进展过程中驱动紫杉醇耐药的基因和通路,基于癌症基因组图谱(TCGA)数据库和基因表达综合数据库(GEO)(包括GSE86099和GSE161533)进行了生物信息学分析。在TCGA数据和两个GEO数据集中进行差异表达分析,以获得差异表达基因(DEG)。基于GSE161533,进行加权基因共表达网络分析(WGCNA)以识别与ESCC肿瘤状态相关的关键模块。将两个GEO数据集共有的DEG与关键模块中的基因进行交集分析,以获得紫杉醇耐药特异性或非紫杉醇耐药特异性基因,随后对这些基因进行最小绝对收缩和选择算子(LASSO)特征选择,从而选择紫杉醇耐药特异性或非紫杉醇耐药特异性关键基因。使用十种机器学习模型验证这些关键基因的生物学意义;还预测了针对紫杉醇耐药特异性基因的潜在治疗药物。结果,我们鉴定出24个紫杉醇耐药特异性基因和18个非紫杉醇耐药特异性基因。基于关键基因的ESCC机器分类器在交叉验证和独立测试集GSE164158中均获得了相对较高的AUC值。总共预测了207种药物(如贝伐单抗)可作为对紫杉醇耐药的ESCC患者的替代治疗药物。这些结果可能为ESCC进展背景下紫杉醇耐药的深入研究提供线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6415/8386171/717cefe0ac7a/fgene-12-671639-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验