Suppr超能文献

基于长链非编码 RNA 的列线图识别可改善食管鳞癌预后预测。

Identification of a nomogram based on long non-coding RNA to improve prognosis prediction of esophageal squamous cell carcinoma.

机构信息

Reproductive Medicine Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China.

Department of Clinical Laboratory, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, Guangdong, China.

出版信息

Aging (Albany NY). 2020 Jan 24;12(2):1512-1526. doi: 10.18632/aging.102697.

Abstract

PURPOSE

Esophageal squamous cell carcinoma (ESCC) remains a common aggressive malignancy in the world. Several long non-coding RNAs (lncRNAs) are reported to predict the prognosis of ESCC. Therefore, an in-depth research is urgently needed to further investigate the prognostic value of lncRNAs in ESCC.

RESULTS

From the training set, we identified a eight-lncRNA signature (including AP000487, AC011997, LINC01592, LINC01497, LINC01711, FENDRR, AC087045, AC137770) which separated the patients into two groups with significantly different overall survival (hazard ratio, HR = 3.79, 95% confidence interval, 95% CI [2.56-5.62]; < 0.001). The signature was applied to the validation set (HR = 2.73, 95%CI [1.65-4.53]; < 0.001) and showed similar prognostic values. Stratified, univariate and multivariate Cox regression analysis indicated that the signature was an independent prognostic factor for patients with ESCC. A nomogram based on the lncRNAs signature, age, grade and stage was developed and showed good accuracy for predicting 1-, 3- and 5-year survival probability of ESCC patients. We found a strong correlation between the gene significance for the survival time and T stage. Eight modules were constructed, among which the key module most closely associated with clinical information was identified.

CONCLUSIONS

Our eight-lincRNA signature and nomogram could be practical and reliable prognostic tools for esophageal squamous cell carcinoma.

METHODS

We downloaded the lncRNA expression profiles of ESCC patients from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets and separated to training and validation cohort. The univariate, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis were used to identify a lncRNA-based signature. The predictive value of the signature was assessed using the Kaplan-Meier method, receiver operating characteristic (ROC) curves and area under curve (AUC). Weighted gene co-expression network analysis (WGCNA) was applied to predict the intrinsic relationship between gene expressions. In addition, we further explored the combination of clinical information and module construction.

摘要

目的

食管鳞状细胞癌(ESCC)仍然是世界上常见的侵袭性恶性肿瘤。据报道,有几种长链非编码 RNA(lncRNA)可以预测 ESCC 的预后。因此,迫切需要进行深入研究,以进一步探讨 lncRNA 在 ESCC 中的预后价值。

结果

在训练集中,我们确定了一个由八个 lncRNA 组成的特征(包括 AP000487、AC011997、LINC01592、LINC01497、LINC01711、FENDRR、AC087045、AC137770),这些特征将患者分为两组,两组的总生存率有显著差异(风险比,HR=3.79,95%置信区间,95%CI[2.56-5.62];<0.001)。该特征应用于验证集(HR=2.73,95%CI[1.65-4.53];<0.001),并显示出相似的预后价值。分层、单变量和多变量 Cox 回归分析表明,该特征是 ESCC 患者的独立预后因素。基于 lncRNA 特征、年龄、分级和分期建立了列线图,该列线图对 ESCC 患者 1、3 和 5 年生存率的预测具有良好的准确性。我们发现基因对生存时间的意义与 T 分期之间存在很强的相关性。构建了八个模块,其中与临床信息最密切相关的关键模块被确定。

结论

我们的八个 lincRNA 特征和列线图可以作为食管鳞状细胞癌的实用和可靠的预后工具。

方法

我们从基因表达综合数据库(GEO)和癌症基因组图谱(TCGA)数据集下载了 ESCC 患者的 lncRNA 表达谱,并将其分为训练集和验证集。使用单变量、最小绝对收缩和选择算子(LASSO)和多变量 Cox 回归分析来识别基于 lncRNA 的特征。使用 Kaplan-Meier 方法、接收者操作特征(ROC)曲线和曲线下面积(AUC)评估特征的预测价值。应用加权基因共表达网络分析(WGCNA)预测基因表达之间的内在关系。此外,我们进一步探索了临床信息与模块构建的结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8741/7053640/8e079a51a56d/aging-12-102697-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验