Suppr超能文献

一种使用惩罚似然法的变率数量性状进化模型。

A variable-rate quantitative trait evolution model using penalized-likelihood.

作者信息

Revell Liam J

机构信息

Department of Biology, University of Massachusetts Boston, Boston, MA, USA.

Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.

出版信息

PeerJ. 2021 Aug 17;9:e11997. doi: 10.7717/peerj.11997. eCollection 2021.

Abstract

In recent years it has become increasingly popular to use phylogenetic comparative methods to investigate heterogeneity in the rate or process of quantitative trait evolution across the branches or clades of a phylogenetic tree. Here, I present a new method for modeling variability in the rate of evolution of a continuously-valued character trait on a reconstructed phylogeny. The underlying model of evolution is stochastic diffusion (Brownian motion), but in which the instantaneous diffusion rate (σ) evolves by Brownian motion on a logarithmic scale. Unfortunately, it's not possible to simultaneously estimate the rates of evolution along each edge of the tree the rate of evolution of σ itself using Maximum Likelihood. As such, I propose a penalized-likelihood method in which the penalty term is equal to the log-transformed probability density of the rates under a Brownian model, multiplied by a 'smoothing' coefficient, λ, selected by the user. λ determines the magnitude of penalty that's applied to rate variation between edges. Lower values of λ penalize rate variation relatively little; whereas larger λ values result in minimal rate variation among edges of the tree in the fitted model, eventually converging on a single value of σ for all of the branches of the tree. In addition to presenting this model here, I have also implemented it as part of my R package in the function . Using different values of the penalty coefficient, λ, I fit the model to simulated data with: Brownian rate variation among edges (the model assumption); uncorrelated rate variation; rate changes that occur in discrete places on the tree; and no rate variation at all among the branches of the phylogeny. I then compare the estimated values of σ to their known true values. In addition, I use the method to analyze a simple empirical dataset of body mass evolution in mammals. Finally, I discuss the relationship between the method of this article and other models from the phylogenetic comparative methods and finance literature, as well as some applications and limitations of the approach.

摘要

近年来,使用系统发育比较方法来研究系统发育树各分支或进化枝上数量性状进化速率或过程的异质性变得越来越流行。在此,我提出一种新方法,用于对重构系统发育树上连续值性状特征的进化速率变异性进行建模。进化的基础模型是随机扩散(布朗运动),但其中瞬时扩散速率(σ)在对数尺度上通过布朗运动进化。不幸的是,使用最大似然法无法同时估计沿树的每条边的进化速率以及σ本身的进化速率。因此,我提出一种惩罚似然法,其中惩罚项等于布朗模型下速率的对数变换概率密度,乘以用户选择的“平滑”系数λ。λ决定应用于边之间速率变化的惩罚幅度。较小的λ值对速率变化的惩罚相对较小;而较大的λ值会使拟合模型中树的边之间的速率变化最小,最终所有分支收敛于σ的单个值。除了在此介绍此模型外,我还将其作为我的R包中的函数实现。使用不同的惩罚系数λ值,我将该模型拟合到具有以下情况的模拟数据:边之间的布朗速率变化(模型假设);不相关的速率变化;树中离散位置发生的速率变化;以及系统发育树各分支之间完全没有速率变化。然后我将σ的估计值与其已知真实值进行比较。此外,我使用该方法分析了一个关于哺乳动物体重进化的简单实证数据集。最后,我讨论了本文方法与系统发育比较方法和金融文献中其他模型的关系,以及该方法的一些应用和局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验