Suppr超能文献

结合深度视觉与触觉贝叶斯探索的灵巧机器人手抓握稳定性预测

Grasp Stability Prediction for a Dexterous Robotic Hand Combining Depth Vision and Haptic Bayesian Exploration.

作者信息

Siddiqui Muhammad Sami, Coppola Claudio, Solak Gokhan, Jamone Lorenzo

机构信息

ARQ (Advanced Robotics at Queen Mary), School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom.

出版信息

Front Robot AI. 2021 Aug 12;8:703869. doi: 10.3389/frobt.2021.703869. eCollection 2021.

Abstract

Grasp stability prediction of unknown objects is crucial to enable autonomous robotic manipulation in an unstructured environment. Even if prior information about the object is available, real-time local exploration might be necessary to mitigate object modelling inaccuracies. This paper presents an approach to predict safe grasps of unknown objects using depth vision and a dexterous robot hand equipped with tactile feedback. Our approach does not assume any prior knowledge about the objects. First, an object pose estimation is obtained from RGB-D sensing; then, the object is explored haptically to maximise a given grasp metric. We compare two probabilistic methods (i.e. standard and unscented Bayesian Optimisation) against random exploration (i.e. uniform grid search). Our experimental results demonstrate that these probabilistic methods can provide confident predictions after a limited number of exploratory observations, and that unscented Bayesian Optimisation can find safer grasps, taking into account the uncertainty in robot sensing and grasp execution.

摘要

未知物体的抓取稳定性预测对于在非结构化环境中实现自主机器人操作至关重要。即使可以获取有关物体的先验信息,实时局部探索可能仍是减轻物体建模不准确影响所必需的。本文提出了一种使用深度视觉和配备触觉反馈的灵巧机器人手来预测未知物体安全抓取的方法。我们的方法不假定关于物体的任何先验知识。首先,从RGB-D传感获得物体位姿估计;然后,通过触觉对物体进行探索以最大化给定的抓取指标。我们将两种概率方法(即标准贝叶斯优化和无迹贝叶斯优化)与随机探索(即均匀网格搜索)进行比较。我们的实验结果表明,这些概率方法在进行有限次数的探索性观测后可以提供可靠的预测,并且无迹贝叶斯优化在考虑机器人传感和抓取执行中的不确定性的情况下能够找到更安全的抓取方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/449b/8387702/ffe2e71712c1/frobt-08-703869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验