Suppr超能文献

PALMNUT:一种增强的近端交替线性化最小化算法及其在幅度和相位分离正则化中的应用

PALMNUT: An Enhanced Proximal Alternating Linearized Minimization Algorithm with Application to Separate Regularization of Magnitude and Phase.

作者信息

Liu Yunsong, Haldar Justin P

机构信息

Signal and Image Processing Institute, Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, 90089, USA.

出版信息

IEEE Trans Comput Imaging. 2021;7:530-518. doi: 10.1109/tci.2021.3077806. Epub 2021 May 6.

Abstract

We introduce a new algorithm for complex image reconstruction with separate regularization of the image magnitude and phase. This optimization problem is interesting in many different image reconstruction contexts, although is nonconvex and can be difficult to solve. In this work, we first describe a novel implementation of the previous proximal alternating linearized minimization (PALM) algorithm to solve this optimization problem. We then make enhancements to PALM, leading to a new algorithm named PALMNUT that combines the PALM together with Nesterov's momentum and a novel approach that relies on uncoupled coordinatewise step sizes derived from coordinatewise Lipschitz-like bounds. Theoretically, we establish that a version of PALMNUT (without Nesterov's momentum) monotonically decreases the objective function, guaranteeing convergence of the cost function value. Empirical results obtained in the context of magnetic resonance imaging demonstrate that PALMNUT has computational advantages over common existing approaches like alternating minimization. Although our focus is on the application to separate magnitude and phase regularization, we expect that the same approach may also be useful in other nonconvex optimization problems with similar objective function structure.

摘要

我们介绍了一种用于复杂图像重建的新算法,该算法对图像的幅度和相位进行单独正则化。这个优化问题在许多不同的图像重建场景中都很有趣,尽管它是非凸的且可能难以求解。在这项工作中,我们首先描述了一种用于解决此优化问题的先前近端交替线性化最小化(PALM)算法的新颖实现。然后,我们对PALM进行了改进,得到了一种名为PALMNUT的新算法,该算法将PALM与Nesterov动量以及一种基于从坐标方向类似Lipschitz界导出的解耦坐标方向步长的新颖方法相结合。从理论上讲,我们证明了PALMNUT的一个版本(不包括Nesterov动量)单调递减目标函数,从而保证了成本函数值的收敛。在磁共振成像背景下获得的实证结果表明,PALMNUT相对于诸如交替最小化等常见现有方法具有计算优势。尽管我们的重点是应用于幅度和相位的单独正则化,但我们预计相同的方法在具有类似目标函数结构的其他非凸优化问题中也可能有用。

相似文献

2
Time of flight PET reconstruction using nonuniform update for regional recovery uniformity.
Med Phys. 2019 Feb;46(2):649-664. doi: 10.1002/mp.13321. Epub 2019 Jan 4.
3
On the convergence of nonconvex minimization methods for image recovery.
IEEE Trans Image Process. 2015 May;24(5):1587-98. doi: 10.1109/TIP.2015.2401430. Epub 2015 Feb 6.
4
Sparse Blind Deconvolution with Nonconvex Optimization for Ultrasonic NDT Application.
Sensors (Basel). 2020 Dec 4;20(23):6946. doi: 10.3390/s20236946.
5
Scalable Proximal Jacobian Iteration Method With Global Convergence Analysis for Nonconvex Unconstrained Composite Optimizations.
IEEE Trans Neural Netw Learn Syst. 2019 Sep;30(9):2825-2839. doi: 10.1109/TNNLS.2018.2885699. Epub 2019 Jan 15.
6
Accelerated statistical reconstruction for C-arm cone-beam CT using Nesterov's method.
Med Phys. 2015 May;42(5):2699-708. doi: 10.1118/1.4914378.
7
The Strength of Nesterov's Extrapolation in the Individual Convergence of Nonsmooth Optimization.
IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2557-2568. doi: 10.1109/TNNLS.2019.2933452. Epub 2019 Sep 2.
9
A second-order dynamical approach with variable damping to nonconvex smooth minimization.
Appl Anal. 2018 Jul 9;99(3):361-378. doi: 10.1080/00036811.2018.1495330. eCollection 2020.
10
Semi-Linearized Proximal Alternating Minimization for a Discrete Mumford-Shah Model.
IEEE Trans Image Process. 2020;29(1):2176-2189. doi: 10.1109/TIP.2019.2944561. Epub 2019 Oct 7.

引用本文的文献

1
The Potential of Phase Constraints for Non-Fourier Radiofrequency-Encoded MRI.
IEEE Trans Comput Imaging. 2024;10:223-232. doi: 10.1109/tci.2024.3361372. Epub 2024 Feb 1.

本文引用的文献

1
Linear Predictability in MRI Reconstruction: Leveraging Shift-Invariant Fourier Structure for Faster and Better Imaging.
IEEE Signal Process Mag. 2020 Jan;37(1):69-82. doi: 10.1109/msp.2019.2949570. Epub 2020 Jan 17.
2
Fast submillimeter diffusion MRI using gSlider-SMS and SNR-enhancing joint reconstruction.
Magn Reson Med. 2020 Aug;84(2):762-776. doi: 10.1002/mrm.28172. Epub 2020 Jan 10.
3
Convolutional Analysis Operator Learning: Acceleration and Convergence.
IEEE Trans Image Process. 2020;29(1):2108-2122. doi: 10.1109/TIP.2019.2937734. Epub 2019 Sep 2.
4
General phase regularized reconstruction using phase cycling.
Magn Reson Med. 2018 Jul;80(1):112-125. doi: 10.1002/mrm.27011. Epub 2017 Nov 21.
5
Convolutional Dictionary Learning: Acceleration and Convergence.
IEEE Trans Image Process. 2018 Apr;27(4):1697-1712. doi: 10.1109/TIP.2017.2761545. Epub 2017 Oct 9.
6
Real diffusion-weighted MRI enabling true signal averaging and increased diffusion contrast.
Neuroimage. 2015 Nov 15;122:373-84. doi: 10.1016/j.neuroimage.2015.07.074. Epub 2015 Aug 1.
7
ESPIRiT--an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA.
Magn Reson Med. 2014 Mar;71(3):990-1001. doi: 10.1002/mrm.24751.
8
A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE).
Neuroimage. 2013 May 15;72:41-7. doi: 10.1016/j.neuroimage.2013.01.038. Epub 2013 Jan 28.
9
Separate magnitude and phase regularization via compressed sensing.
IEEE Trans Med Imaging. 2012 Sep;31(9):1713-23. doi: 10.1109/TMI.2012.2196707. Epub 2012 Apr 26.
10
Improved diffusion imaging through SNR-enhancing joint reconstruction.
Magn Reson Med. 2013 Jan;69(1):277-89. doi: 10.1002/mrm.24229. Epub 2012 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验