Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, 125 Nashua Street 6th floor, Suite 660, Boston, MA, 02114, USA.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48105, USA.
Med Phys. 2019 Feb;46(2):649-664. doi: 10.1002/mp.13321. Epub 2019 Jan 4.
Time of flight (TOF) PET reconstruction is well known to statistically improve the image quality compared to non-TOF PET. Although TOF PET can improve the overall signal to noise ratio (SNR) of the image compared to non-TOF PET, the SNR disparity between separate regions in the reconstructed image using TOF data becomes higher than that using non-TOF data. Using the conventional ordered subset expectation maximization (OS-EM) method, the SNR in the low activity regions becomes significantly lower than in the high activity regions due to the different photon statistics of TOF bins. A uniform recovery across different SNR regions is preferred if it can yield an overall good image quality within small number of iterations in practice. To allow more uniform recovery of regions, a spatially variant update is necessary for different SNR regions.
This paper focuses on designing a spatially variant step size and proposes a TOF-PET reconstruction method that uses a nonuniform separable quadratic surrogates (NUSQS) algorithm, providing a straightforward control of spatially variant step size. To control the noise, a spatially invariant quadratic regularization is incorporated, which by itself does not theoretically affect the recovery uniformity. The Nesterov's momentum method with ordered subsets (OS) is also used to accelerate the reconstruction speed. To evaluate the proposed method, an XCAT simulation phantom and clinical data from a pancreas cancer patient with full (ground truth) and 6× downsampled counts were used, where a Poisson thinning process was employed for downsampling. We selected tumor and cold regions of interest (ROIs) and compared the proposed method with the TOF-based conventional OS-EM and OS-SQS algorithms with an early stopping criterion.
In computer simulation, without regularization, hot regions of OS-EM and OS-NUSQS converged similarly, but cold region of OS-EM was noisier than OS-NUSQS after 24 iterations. With regularization, although the overall speeds of OS-EM and OS-NUSQS were similar, recovery ratios of hot and cold regions reconstructed by the OS-NUSQS were more uniform compared to those of the conventional OS-SQS and OS-EM. The OS-NUSQS with Nesterov's momentum converged faster than others while preserving the uniform recovery. In the clinical example, we demonstrated that the OS-NUSQS with Nesterov's momentum provides more uniform recovery ratios of hot and cold ROIs compared to the OS-SQS and OS-EM. Although the cost function of all methods is equivalent, the proposed method has higher structural similarity (SSIM) values of hot and cold regions compared to other methods after 24 iterations. Furthermore, our computing time using graphics processing unit was 80× shorter than the time using quad-core CPUs.
This paper proposes a TOF PET reconstruction method using the OS-NUSQS with Nesterov's momentum for uniform recovery of different SNR regions. In particular, the spatially nonuniform step size in the proposed method provides uniform recovery ratios of different SNR regions, and the Nesterov's momentum further accelerates overall convergence while preserving uniform recovery. The computer simulation and clinical example demonstrate that the proposed method converges uniformly across ROIs. In addition, tumor contrast and SSIM of the proposed method were higher than those of the conventional OS-EM and OS-SQS in early iterations.
与非 TOF PET 相比,飞行时间 (TOF) PET 重建以统计学方式改善图像质量是众所周知的。尽管与非 TOF PET 相比,TOF PET 可以提高图像的整体信噪比 (SNR),但使用 TOF 数据重建图像中不同区域之间的 SNR 差异会变得比使用非 TOF 数据更高。使用传统的有序子集期望最大化 (OS-EM) 方法,由于 TOF -bin 的不同光子统计特性,低活性区域中的 SNR 会显著低于高活性区域。如果能够在实际中通过少量迭代获得整体良好的图像质量,则优选在不同 SNR 区域之间实现更均匀的恢复。为了允许对不同的 SNR 区域进行更均匀的恢复,需要对不同的 SNR 区域进行空间变化的更新。
本文重点设计了一种空间变化的步长,并提出了一种使用非均匀可分离二次替代物 (NUSQS) 算法的 TOF-PET 重建方法,为空间变化的步长提供了直接控制。为了控制噪声,引入了空间不变二次正则化,它本身不会从理论上影响恢复的均匀性。还使用带有序子集 (OS) 的 Nesterov 动量方法来加速重建速度。为了评估所提出的方法,使用了 XCAT 模拟体模和来自胰腺癌患者的临床数据(具有完整(真实值)和 6×下采样计数),其中采用泊松细化过程进行下采样。我们选择了肿瘤和冷感兴趣区域 (ROI),并将所提出的方法与基于 TOF 的传统 OS-EM 和 OS-SQS 算法进行了比较,这些算法都采用了提前停止准则。
在计算机模拟中,在没有正则化的情况下,OS-EM 和 OS-NUSQS 的热区收敛情况相似,但在 24 次迭代后,OS-EM 的冷区噪声更大。在正则化的情况下,尽管 OS-EM 和 OS-NUSQS 的整体速度相似,但与传统的 OS-SQS 和 OS-EM 相比,OS-NUSQS 重建的热区和冷区的恢复比更加均匀。具有 Nesterov 动量的 OS-NUSQS 比其他方法更快地收敛,同时保持了均匀的恢复。在临床示例中,我们证明了具有 Nesterov 动量的 OS-NUSQS 与 OS-SQS 和 OS-EM 相比,为热区和冷区提供了更均匀的恢复比。尽管所有方法的代价函数都是等效的,但与其他方法相比,所提出的方法在 24 次迭代后具有更高的热区和冷区的结构相似性 (SSIM) 值。此外,我们使用图形处理单元的计算时间比使用四核 CPU 的时间短 80 倍。
本文提出了一种使用具有 Nesterov 动量的 OS-NUSQS 的 TOF PET 重建方法,用于不同 SNR 区域的均匀恢复。特别是,所提出的方法中的空间非均匀步长为不同 SNR 区域提供了均匀的恢复比,而 Nesterov 动量进一步加速了整体收敛,同时保持了均匀的恢复。计算机模拟和临床示例表明,该方法在 ROI 之间均匀收敛。此外,与传统的 OS-EM 和 OS-SQS 相比,该方法在早期迭代中的肿瘤对比度和 SSIM 更高。