Suppr超能文献

在美国使用搜索引擎分析研究公众关于新冠疫苗的最常见问题:观察性研究

Examining the Public's Most Frequently Asked Questions Regarding COVID-19 Vaccines Using Search Engine Analytics in the United States: Observational Study.

作者信息

Sajjadi Nicholas B, Shepard Samuel, Ottwell Ryan, Murray Kelly, Chronister Justin, Hartwell Micah, Vassar Matt

机构信息

Office of Medical Student Research College of Osteopathic Medicine Oklahoma State University Center for Health Sciences Tulsa, OK United States.

Department of Internal Medicine University of Oklahoma School of Community Medicine Tulsa, OK United States.

出版信息

JMIR Infodemiology. 2021 Aug 4;1(1):e28740. doi: 10.2196/28740. eCollection 2021 Jan-Dec.

Abstract

BACKGROUND

The emergency authorization of COVID-19 vaccines has offered the first means of long-term protection against COVID-19-related illness since the pandemic began. It is important for health care professionals to understand commonly held COVID-19 vaccine concerns and to be equipped with quality information that can be used to assist in medical decision-making.

OBJECTIVE

Using Google's RankBrain machine learning algorithm, we sought to characterize the content of the most frequently asked questions (FAQs) about COVID-19 vaccines evidenced by internet searches. Secondarily, we sought to examine the information transparency and quality of sources used by Google to answer FAQs on COVID-19 vaccines.

METHODS

We searched COVID-19 vaccine terms on Google and used the "People also ask" box to obtain FAQs generated by Google's machine learning algorithms. FAQs are assigned an "answer" source by Google. We extracted FAQs and answer sources related to COVID-19 vaccines. We used the Rothwell Classification of Questions to categorize questions on the basis of content. We classified answer sources as either academic, commercial, government, media outlet, or medical practice. We used the Journal of the American Medical Association's (JAMA's) benchmark criteria to assess information transparency and Brief DISCERN to assess information quality for answer sources. FAQ and answer source type frequencies were calculated. Chi-square tests were used to determine associations between information transparency by source type. One-way analysis of variance was used to assess differences in mean Brief DISCERN scores by source type.

RESULTS

Our search yielded 28 unique FAQs about COVID-19 vaccines. Most COVID-19 vaccine-related FAQs were seeking factual information (22/28, 78.6%), specifically about safety and efficacy (9/22, 40.9%). The most common source type was media outlets (12/28, 42.9%), followed by government sources (11/28, 39.3%). Nineteen sources met 3 or more JAMA benchmark criteria with government sources as the majority (10/19, 52.6%). JAMA benchmark criteria performance did not significantly differ among source types ( =7.40; =.12). One-way analysis of variance revealed a significant difference in mean Brief DISCERN scores by source type ( =10.27; <.001).

CONCLUSIONS

The most frequently asked COVID-19 vaccine-related questions pertained to vaccine safety and efficacy. We found that government sources provided the most transparent and highest-quality web-based COVID-19 vaccine-related information. Recognizing common questions and concerns about COVID-19 vaccines may assist in improving vaccination efforts.

摘要

背景

自疫情开始以来,新冠病毒疫苗的紧急授权提供了首个长期预防新冠相关疾病的手段。对于医疗保健专业人员来说,了解人们普遍对新冠病毒疫苗存在的担忧,并掌握可用于协助医疗决策的高质量信息非常重要。

目的

利用谷歌的RankBrain机器学习算法,我们试图描述互联网搜索中关于新冠病毒疫苗最常见问题(常见问题解答)的内容特征。其次,我们试图研究谷歌用于回答新冠病毒疫苗常见问题解答的信息来源的透明度和质量。

方法

我们在谷歌上搜索新冠病毒疫苗相关词汇,并使用“人们也问”框获取由谷歌机器学习算法生成的常见问题解答。谷歌会为常见问题解答分配一个“答案”来源。我们提取了与新冠病毒疫苗相关的常见问题解答和答案来源。我们使用罗斯韦尔问题分类法根据内容对问题进行分类。我们将答案来源分为学术、商业、政府、媒体或医疗实践。我们使用美国医学会杂志(JAMA)的基准标准来评估信息透明度,并使用简要辨别工具来评估答案来源的信息质量。计算常见问题解答和答案来源类型的频率。使用卡方检验来确定信息透明度与来源类型之间的关联。使用单因素方差分析来评估不同来源类型的简要辨别平均得分的差异。

结果

我们的搜索产生了28个关于新冠病毒疫苗的独特常见问题解答。大多数与新冠病毒疫苗相关的常见问题解答是在寻求事实性信息(22/28,78.6%),特别是关于安全性和有效性(9/22,40.9%)。最常见的来源类型是媒体(12/28,42.9%),其次是政府来源(11/28,39.3%)。19个来源符合3项或更多JAMA基准标准,其中政府来源占多数(10/19,52.6%)。不同来源类型在JAMA基准标准的表现上没有显著差异(=7.40;=.12)。单因素方差分析显示,不同来源类型的简要辨别平均得分存在显著差异(=10.27;<.001)。

结论

最常被问到的与新冠病毒疫苗相关的问题涉及疫苗的安全性和有效性。我们发现政府来源提供了最透明、质量最高的基于网络的新冠病毒疫苗相关信息。认识到关于新冠病毒疫苗的常见问题和担忧可能有助于改进疫苗接种工作。

相似文献

2
Insights Into Patients Questions Over Bunion Treatments: A Google Study.对患者关于拇囊炎治疗问题的洞察:一项谷歌研究。
Foot Ankle Orthop. 2023 Sep 26;8(3):24730114231198837. doi: 10.1177/24730114231198837. eCollection 2023 Jul.
5
Frequently asked questions about mobility devices among older adults.老年人使用移动设备的常见问题。
Eur Geriatr Med. 2023 Oct;14(5):1075-1081. doi: 10.1007/s41999-023-00815-9. Epub 2023 Jul 28.

引用本文的文献

5
University student perspectives on antimicrobial peptide use in farm animals.大学生对家畜使用抗菌肽的看法。
PLoS One. 2024 Dec 5;19(12):e0309986. doi: 10.1371/journal.pone.0309986. eCollection 2024.

本文引用的文献

4
Societal Costs of a Measles Outbreak.麻疹爆发的社会成本。
Pediatrics. 2021 Apr;147(4). doi: 10.1542/peds.2020-027037. Epub 2021 Mar 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验