Suppr超能文献

正交卷曲螺旋能够使用肽核酸条形码对两种不同的膜蛋白进行快速共价标记。

Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes.

作者信息

Gavins Georgina C, Gröger Katharina, Reimann Marc, Bartoschek Michael D, Bultmann Sebastian, Seitz Oliver

机构信息

Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 Berlin 12489 Germany

Center for Molecular Biosystems (BioSysM), Faculty of Biology, Ludwig-Maximilians-Universität München, Butenandtstr. 1 Munich 81377 Germany

出版信息

RSC Chem Biol. 2021 Jul 16;2(4):1291-1295. doi: 10.1039/d1cb00126d. eCollection 2021 Aug 5.

Abstract

Templated chemistry offers the prospect of addressing specificity challenges occurring in bioconjugation reactions. Here, we show two peptide-templated amide-bond forming reactions that enable the concurrent labelling of two different membrane proteins with two different peptide nucleic acid () barcodes. The reaction system is based on the mutually selective coiled coil interaction between two thioester-linked -peptide conjugates and two cysteine peptides serving as genetically encoded peptide tags. Orthogonal coiled coil templated covalent labelling is highly specific, quantitative and proceeds within a minute. To demonstrate the usefulness, we evaluated receptor internalisation of two membranous receptors EGFR (epidermal growth factor) and ErbB2 (epidermal growth factor receptor 2) by first staining -tagged proteins with fluorophore-DNA conjugates and then erasing signals from non-internalized receptors toehold-mediated strand displacement.

摘要

模板化学为解决生物共轭反应中出现的特异性挑战提供了前景。在此,我们展示了两种肽模板化的酰胺键形成反应,可实现用两种不同的肽核酸(PNA)条形码同时标记两种不同的膜蛋白。该反应体系基于两个硫酯连接的α-肽共轭物与两个作为基因编码肽标签的半胱氨酸肽之间的相互选择性卷曲螺旋相互作用。正交卷曲螺旋模板化共价标记具有高度特异性、定量性,且在一分钟内即可完成。为证明其有用性,我们通过先用荧光团-DNA共轭物对α-标签蛋白进行染色,然后通过链置换介导的链置换消除未内化受体的信号,来评估两种膜受体表皮生长因子受体(EGFR)和表皮生长因子受体2(ErbB2)的受体内化情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9b5/8341593/9edb88d8c798/d1cb00126d-s1.jpg

相似文献

1
Orthogonal coiled coils enable rapid covalent labelling of two distinct membrane proteins with peptide nucleic acid barcodes.
RSC Chem Biol. 2021 Jul 16;2(4):1291-1295. doi: 10.1039/d1cb00126d. eCollection 2021 Aug 5.
2
Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins.
Nat Chem. 2021 Jan;13(1):15-23. doi: 10.1038/s41557-020-00584-z. Epub 2020 Dec 7.
3
Rapid Covalent Fluorescence Labeling of Membrane Proteins on Live Cells via Coiled-Coil Templated Acyl Transfer.
Bioconjug Chem. 2015 Oct 21;26(10):2106-17. doi: 10.1021/acs.bioconjchem.5b00387. Epub 2015 Sep 24.
4
Towards a templated reaction that translates RNA in cells into a proaptotic peptide-PNA conjugate.
J Pept Sci. 2023 Jul;29(7):e3477. doi: 10.1002/psc.3477. Epub 2023 Jan 20.
5
RNA-templated chemical synthesis of proapoptotic L- and d-peptides.
Bioorg Med Chem. 2022 Jul 15;66:116786. doi: 10.1016/j.bmc.2022.116786. Epub 2022 May 14.
7
Mismatched covalent and noncovalent templating leads to large coiled coil-templated macrocycles.
Chem Sci. 2023 Apr 3;14(18):4935-4944. doi: 10.1039/d3sc00231d. eCollection 2023 May 10.
8
Equimolar Cross-Coupling Using Reactive Coiled Coils for Covalent Protein Assemblies.
Bioconjug Chem. 2024 Oct 3. doi: 10.1021/acs.bioconjchem.4c00327.
9
Peptide-templated acyl transfer: a chemical method for the labeling of membrane proteins on live cells.
Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10237-41. doi: 10.1002/anie.201403214. Epub 2014 Jul 31.
10
Templated native chemical ligation: peptide chemistry beyond protein synthesis.
J Pept Sci. 2014 Feb;20(2):78-86. doi: 10.1002/psc.2602. Epub 2014 Jan 7.

引用本文的文献

2
Synthesis of Protein-Oligonucleotide Conjugates.
Biomolecules. 2022 Oct 20;12(10):1523. doi: 10.3390/biom12101523.
3
Orthogonal Peptide-Templated Labeling Elucidates Lateral ET R/ET R Proximity and Reveals Altered Downstream Signaling.
Chembiochem. 2022 Mar 18;23(6):e202100340. doi: 10.1002/cbic.202100340. Epub 2021 Oct 26.

本文引用的文献

1
Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags.
Chembiochem. 2021 May 14;22(10):1717-1732. doi: 10.1002/cbic.202000797. Epub 2021 Feb 26.
2
Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins.
Nat Chem. 2021 Jan;13(1):15-23. doi: 10.1038/s41557-020-00584-z. Epub 2020 Dec 7.
3
Nucleic acid constructs for the interrogation of multivalent protein interactions.
Chem Soc Rev. 2020 Oct 7;49(19):6848-6865. doi: 10.1039/d0cs00518e. Epub 2020 Sep 1.
4
MiniVIPER Is a Peptide Tag for Imaging and Translocating Proteins in Cells.
Biochemistry. 2020 Aug 25;59(33):3051-3059. doi: 10.1021/acs.biochem.0c00526. Epub 2020 Aug 17.
5
A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells.
Nat Chem Biol. 2020 May;16(5):513-519. doi: 10.1038/s41589-019-0443-y. Epub 2020 Jan 6.
6
High-Throughput Quantification of Surface Protein Internalization and Degradation.
ACS Chem Biol. 2019 Jun 21;14(6):1154-1163. doi: 10.1021/acschembio.9b00016. Epub 2019 May 14.
7
Nucleic Acid-Barcoding Technologies: Converting DNA Sequencing into a Broad-Spectrum Molecular Counter.
Angew Chem Int Ed Engl. 2019 Mar 22;58(13):4144-4162. doi: 10.1002/anie.201808956. Epub 2019 Feb 6.
8
Time-Resolved Tracking of Separately Internalized Neuropeptide Y Receptors by Two-Color Pulse-Chase.
ACS Chem Biol. 2018 Mar 16;13(3):618-627. doi: 10.1021/acschembio.7b00999. Epub 2018 Jan 11.
9
In situ protein detection with enhanced specificity using DNA-conjugated antibodies and proximity ligation.
Mod Pathol. 2018 Feb;31(2):253-263. doi: 10.1038/modpathol.2017.102. Epub 2017 Sep 22.
10
Fluorescent labelling in living cells.
Curr Opin Biotechnol. 2017 Dec;48:61-68. doi: 10.1016/j.copbio.2017.03.012. Epub 2017 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验