Zhang Zhong-Chun, Wang Kai, Hao Fu-Hua, Shang Jin-Long, Tang Hui-Ru, Qiu Bao-Sheng
School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China.
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
Environ Microbiol. 2021 Nov;23(11):6420-6432. doi: 10.1111/1462-2920.15732. Epub 2021 Aug 29.
Mycosporine-like amino acids (MAAs) were widespread in diverse organisms to attenuate UV radiation. We recently characterized the large, complicated MAA mycosporine-2-(4-deoxygadusolyl-ornithine) in desert cyanobacterium Nostoc flagelliforme. Synthesis of this MAA requires the five-gene cluster mysABDC2C3. Here, bioinformatic analysis indicated that mysC duplication within five-gene mys clusters is strictly limited to drought-tolerant cyanobacteria. Phylogenic analysis distinguished these duplicated MysCs into two clades that separated from canonical MysCs. Heterologous expression of N. flagelliforme mys genes in Escherichia coli showed that MysAB produces 4-deoxygadusol. The ATP-grasp ligase of MysC3 catalyses the linkage of the δ- or ε-amino group of ornithine/lysine to 4-deoxygadusol, yielding mycosporine-ornithine or mycosporine-lysine respectively. The ATP-grasp ligase of MysC2 strictly condenses the α-amino group of mycosporine-ornithine to another 4-deoxygadusol. MysD (D-Ala-D-Ala ligase) functions following MysC2 to catalyse the formation of mycosporine-2-(4-deoxygadusolyl-ornithine). High arginine content likely provides a greater pool of ornithine over other amino acids during rehydration of desiccated N. flagelliforme. Duplication of ATP-grasp ligases is specific for the use of substrates that have two amino groups (such as ornithine) for the production of complicated MAAs with multiple chromophores. This five-enzyme biosynthesis pathway for complicated MAAs is a novel adaptation of cyanobacteria for UV tolerance in drought environments.
类菌孢素氨基酸(MAAs)广泛存在于各种生物体中以减轻紫外线辐射。我们最近在沙漠蓝藻发状念珠藻中鉴定出了大型、复杂的MAA菌孢素-2-(4-脱氧古杜索基-鸟氨酸)。这种MAA的合成需要五基因簇mysABDC2C3。在这里,生物信息学分析表明,五基因mys簇内的mysC复制严格限于耐旱蓝藻。系统发育分析将这些复制的MysCs分为两个与典型MysCs分离的进化枝。发状念珠藻mys基因在大肠杆菌中的异源表达表明,MysAB产生4-脱氧古杜索。MysC3的ATP抓握连接酶催化鸟氨酸/赖氨酸的δ-或ε-氨基与4-脱氧古杜索相连,分别产生菌孢素-鸟氨酸或菌孢素-赖氨酸。MysC2的ATP抓握连接酶严格地将菌孢素-鸟氨酸的α-氨基与另一个4-脱氧古杜索缩合。MysD(D-丙氨酸-D-丙氨酸连接酶)在MysC2之后起作用,催化菌孢素-2-(4-脱氧古杜索基-鸟氨酸)的形成。高精氨酸含量可能在干燥的发状念珠藻复水过程中比其他氨基酸提供更多的鸟氨酸库。ATP抓握连接酶的复制专门用于使用具有两个氨基(如鸟氨酸)的底物来生产具有多个发色团的复杂MAA。这种复杂MAA的五酶生物合成途径是蓝藻在干旱环境中适应紫外线耐受性的一种新方式。