Suppr超能文献

亚硝酸盐作为一种诱导因素,导致赖氨酰肽酶依赖硝酸盐的金属铁的厌氧腐蚀。

Nitrite as a causal factor for nitrate-dependent anaerobic corrosion of metallic iron induced by Prolixibacter strains.

机构信息

Japan Collection of Microorganisms (JCM), RIKEN BioResource Research Center (RIKEN-BRC), Tsukuba, Japan.

Biofunctional Catalyst Research Team, Center for Sustainable Resource Science, RIKEN, Wako, Japan.

出版信息

Microbiologyopen. 2021 Aug;10(4):e1225. doi: 10.1002/mbo3.1225.

Abstract

Microbially influenced corrosion (MIC) may contribute significantly to overall corrosion risks, especially in the gas and petroleum industries. In this study, we isolated four Prolixibacter strains, which belong to the phylum Bacteroidetes, and examined their nitrate respiration- and Fe -corroding activities, together with two previously isolated Prolixibacter strains. Four of the six Prolixibacter strains reduced nitrate under anaerobic conditions, while the other two strains did not. The anaerobic growth of the four nitrate-reducing strains was enhanced by nitrate, which was not observed in the two strains unable to reduce nitrate. When the nitrate-reducing strains were grown anaerobically in the presence of Fe or carbon steel, the corrosion of the materials was enhanced by more than 20-fold compared to that in aseptic controls. This enhancement was not observed in cultures of the strains unable to reduce nitrate. The oxidation of Fe in the anaerobic cultures of nitrate-reducing strains occurred concomitantly with the formation of nitrite. Since nitrite chemically oxidized Fe under anaerobic and aseptic conditions, the corrosion of Fe - and carbon steel by the nitrate-reducing Prolixibacter strains was deduced to be mainly enhanced via the biological reduction of nitrate to nitrite, followed by the chemical oxidation of Fe to Fe and Fe coupled to the reduction of nitrite.

摘要

微生物影响腐蚀(MIC)可能会对整体腐蚀风险产生重大影响,特别是在天然气和石油行业。在这项研究中,我们分离了 4 株属于拟杆菌门的 Prolixibacter 菌株,并研究了它们的硝酸盐呼吸和 Fe 腐蚀活性,同时还研究了之前分离的 2 株 Prolixibacter 菌株。6 株 Prolixibacter 菌株中有 4 株能够在厌氧条件下还原硝酸盐,而另外 2 株则不能。4 株能够还原硝酸盐的菌株的厌氧生长可以被硝酸盐增强,但在不能还原硝酸盐的 2 株菌株中则观察不到这种现象。当能够还原硝酸盐的菌株在厌氧条件下生长并存在 Fe 或碳钢时,与无菌对照相比,材料的腐蚀增强了 20 多倍。在不能还原硝酸盐的菌株的培养物中没有观察到这种增强。在能够还原硝酸盐的厌氧培养物中,Fe 的氧化与亚硝酸盐的形成同时发生。由于亚硝酸盐在厌氧和无菌条件下可以化学氧化 Fe,因此可以推断出,由硝酸盐还原 Prolixibacter 菌株引起的 Fe 和碳钢的腐蚀主要是通过硝酸盐生物还原为亚硝酸盐,然后通过化学氧化 Fe 为 Fe 和 Fe 与亚硝酸盐的还原偶联来增强。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e2a/8368055/3415a50cda5d/MBO3-10-e1225-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验