Suppr超能文献

利用纵向进展测试数据来确定本科医学教育中的学习效果大小——对进展测试结果的回顾性、单中心、混合模型分析。

Using longitudinal progress test data to determine the effect size of learning in undergraduate medical education - a retrospective, single-center, mixed model analysis of progress testing results.

机构信息

Institute of Biostatistics and Clinical Research, University of Münster, Germany.

Medical Education Research Group, Medical School OWL, Bielefeld University, Bielefeld, Germany.

出版信息

Med Educ Online. 2021 Dec;26(1):1972505. doi: 10.1080/10872981.2021.1972505.

Abstract

Medical education research focuses on the development of efficient learning methods promoting the acquisition of student's knowledge and competencies. Evaluation of any modification of educational approaches needs to be evaluated accordingly and a reliable effect size needs to be reached. Our aim is to provide a methodological basis to calculate effect sizes from longitudinal progress test data that can be used as reference values in further research. We used longitudinally collected progress test data and evaluated the increasing knowledge of medical students from the first to the fifth academic year. Students were asked to participate in the progress test, which consists of 200 multiple-choice questions in single best answer format with an additional 'don't know' option. All available individual test scores of all progress tests (n = 10) administered between April 2012 and October 2017 were analyzed. Due to the large amount of missing test results, e.g., from students at the beginning of their studies, a linear mixed model was fitted to include all collected data. In total, we analyzed 6324 test scores provided by 2587 medical students. Mean score for medical knowledge (% correct answers) increases from 16.6% (SD: 10.8%) to 51.0% (SD: 15.7%, overall effects size using linear mixed models d = 1.55). Medical students showed a learning effect of d = 0.54 (total gain: 6.9%) between the 1 and 2, d = 0.88 (total gain: 12.0%) between the 2 and 3, d = 0.60 (total gain: 7.9%) between the 3 and 4 and d = 0.58 (total gain: 7.9%) between the 4 and 5 study year. We demonstrated that incomplete data from longitudinally collected progress tests can be used to acquire reliable effect size estimates. The demonstrated effects size between d = 0.53-0.9 by study year may help researchers to design studies in medical education.

摘要

医学教育研究侧重于开发有效的学习方法,以促进学生知识和能力的获取。任何教育方法的修改都需要进行相应的评估,并需要达到可靠的效应量。我们的目的是提供一种从纵向进展测试数据中计算效应量的方法学基础,这些效应量可以作为进一步研究的参考值。我们使用纵向收集的进展测试数据,评估了医学生从第一学年到第五学年的知识增长情况。学生被要求参加进展测试,该测试由 200 个单项选择题组成,采用最佳答案格式,并有一个“不知道”的选项。分析了 2012 年 4 月至 2017 年 10 月期间进行的所有可用的 10 次进展测试的所有个体测试成绩。由于大量测试结果缺失,例如,在学生学习初期的测试结果缺失,因此拟合了线性混合模型来包含所有收集的数据。总共分析了 2587 名医学生提供的 6324 个测试成绩。医学知识的平均得分(正确答案的百分比)从 16.6%(SD:10.8%)增加到 51.0%(SD:15.7%,使用线性混合模型的总体效应量 d = 1.55)。医学生在第 1 年和第 2 年之间表现出 0.54 的学习效应(总增益:6.9%),在第 2 年和第 3 年之间表现出 0.88 的学习效应(总增益:12.0%),在第 3 年和第 4 年之间表现出 0.60 的学习效应(总增益:7.9%),在第 4 年和第 5 年之间表现出 0.58 的学习效应(总增益:7.9%)。我们证明,从纵向收集的进展测试中不完整的数据可以用于获得可靠的效应量估计。按学年计算,d 值在 0.53-0.9 之间的效果可能有助于研究人员在医学教育中设计研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9899/8409971/10987e131bbf/ZMEO_A_1972505_F0001_B.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验