Suppr超能文献

使用建模全色图像进行光谱校正以实现图像锐化

Spectrum Correction Using Modeled Panchromatic Image for Pansharpening.

作者信息

Tsukamoto Naoko, Sugaya Yoshihiro, Omachi Shinichiro

机构信息

Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan.

出版信息

J Imaging. 2020 Apr 6;6(4):20. doi: 10.3390/jimaging6040020.

Abstract

Pansharpening is a method applied for the generation of high-spatial-resolution multi-spectral (MS) images using panchromatic (PAN) and multi-spectral images. A common challenge in pansharpening is to reduce the spectral distortion caused by increasing the resolution. In this paper, we propose a method for reducing the spectral distortion based on the intensity-hue-saturation (IHS) method targeting satellite images. The IHS method improves the resolution of an RGB image by replacing the intensity of the low-resolution RGB image with that of the high-resolution PAN image. The spectral characteristics of the PAN and MS images are different, and this difference may cause spectral distortion in the pansharpened image. Although many solutions for reducing spectral distortion using a modeled spectrum have been proposed, the quality of the outcomes obtained by these approaches depends on the image dataset. In the proposed technique, we model a low-spatial-resolution PAN image according to a relative spectral response graph, and then the corrected intensity is calculated using the model and the observed dataset. Experiments were conducted on three IKONOS datasets, and the results were evaluated using some major quality metrics. This quantitative evaluation demonstrated the stability of the pansharpened images and the effectiveness of the proposed method.

摘要

全色锐化是一种利用全色(PAN)图像和多光谱图像生成高空间分辨率多光谱(MS)图像的方法。全色锐化中的一个常见挑战是减少因提高分辨率而导致的光谱失真。在本文中,我们提出了一种基于强度-色调-饱和度(IHS)方法针对卫星图像减少光谱失真的方法。IHS方法通过用高分辨率全色图像的强度替换低分辨率RGB图像的强度来提高RGB图像的分辨率。全色图像和多光谱图像的光谱特征不同,这种差异可能会在全色锐化图像中引起光谱失真。尽管已经提出了许多使用建模光谱减少光谱失真的解决方案,但这些方法获得的结果质量取决于图像数据集。在所提出的技术中,我们根据相对光谱响应图对低空间分辨率全色图像进行建模,然后使用该模型和观测数据集计算校正后的强度。在三个IKONOS数据集上进行了实验,并使用一些主要质量指标对结果进行了评估。这种定量评估证明了全色锐化图像的稳定性以及所提出方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6094/8321035/49bd047bda71/jimaging-06-00020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验