Suppr超能文献

FrMLNet:基于帧的多级网络融合方法。

FrMLNet: Framelet-Based Multilevel Network for Pansharpening.

出版信息

IEEE Trans Cybern. 2023 Jul;53(7):4594-4605. doi: 10.1109/TCYB.2021.3131651. Epub 2023 Jun 15.

Abstract

Most modern satellites can provide two types of images: 1) panchromatic (PAN) image and 2) multispectral (MS) image. The former has high spatial resolution and low spectral resolution, while the latter has high spectral resolution and low spatial resolution. To obtain images with both high spectral and spatial resolution, pansharpening has emerged to fuse the spatial information of the PAN image and the spectral information of the MS image. However, most pansharpening methods fail to preserve spatial and spectral information simultaneously. In this article, we propose a framelet-based convolutional neural network (CNN) for pansharpening which makes it possible to pursue both high spectral and high spatial resolution. Our network consists of three subnetworks: 1) feature embedding net; 2) feature fusion net; and 3) framelet prediction net. Different from conventional CNN methods directly inferring high-resolution MS images, our approach learns to predict their framelet coefficients from available PAN and MS images. The introduction of multilevel feature aggregation and hybrid residual connection makes full use of spatial information of PAN image and spectral information of MS image. Quantitative and qualitative experiments at reduced- and full-resolution demonstrate that the proposed method achieves more appealing results than other state-of-the-art pansharpening methods. The source code and trained models are available at https://github.com/TingMAC/FrMLNet.

摘要

大多数现代卫星可以提供两种类型的图像

1)全色(PAN)图像和 2)多光谱(MS)图像。前者具有高空间分辨率和低光谱分辨率,而后者具有高光谱分辨率和低空间分辨率。为了获得具有高光谱和高空间分辨率的图像, pansharpening 技术应运而生,它融合了 PAN 图像的空间信息和 MS 图像的光谱信息。然而,大多数 pansharpening 方法都不能同时保留空间和光谱信息。在本文中,我们提出了一种基于帧的卷积神经网络(CNN)的 pansharpening 方法,该方法可以同时追求高光谱和高空间分辨率。我们的网络由三个子网组成:1)特征嵌入网络;2)特征融合网络;3)帧预测网络。与传统的直接从可用的 PAN 和 MS 图像推断高分辨率 MS 图像的 CNN 方法不同,我们的方法从现有 PAN 和 MS 图像中学习预测它们的帧系数。多尺度特征聚合和混合残差连接的引入充分利用了 PAN 图像的空间信息和 MS 图像的光谱信息。在降维和全分辨率下进行的定量和定性实验表明,与其他最先进的 pansharpening 方法相比,所提出的方法取得了更吸引人的结果。源代码和训练模型可在 https://github.com/TingMAC/FrMLNet 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验